// // Copyright 2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "convert_common.hpp" #include #include using namespace uhd::convert; DECLARE_CONVERTER(fc64, 1, sc16_item32_le, 1, PRIORITY_SIMD){ const fc64_t *input = reinterpret_cast(inputs[0]); item32_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor); #define convert_fc64_1_to_item32_1_nswap_guts(_al_) \ for (; i+3 < nsamps; i+=4){ \ /* load from input */ \ __m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+0)); \ __m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+1)); \ __m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+2)); \ __m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+3)); \ \ /* convert and scale */ \ __m128i tmpi0 = _mm_cvttpd_epi32(_mm_mul_pd(tmp0, scalar)); \ __m128i tmpi1 = _mm_cvttpd_epi32(_mm_mul_pd(tmp1, scalar)); \ __m128i tmpilo = _mm_unpacklo_epi64(tmpi0, tmpi1); \ __m128i tmpi2 = _mm_cvttpd_epi32(_mm_mul_pd(tmp2, scalar)); \ __m128i tmpi3 = _mm_cvttpd_epi32(_mm_mul_pd(tmp3, scalar)); \ __m128i tmpihi = _mm_unpacklo_epi64(tmpi2, tmpi3); \ \ /* pack + swap 16-bit pairs */ \ __m128i tmpi = _mm_packs_epi32(tmpilo, tmpihi); \ tmpi = _mm_shufflelo_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \ tmpi = _mm_shufflehi_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i *>(output+i), tmpi); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(input) & 0xf) == 0){ convert_fc64_1_to_item32_1_nswap_guts(_) } else{ convert_fc64_1_to_item32_1_nswap_guts(u_) } //convert remainder for (; i < nsamps; i++){ output[i] = fc64_to_item32_sc16(input[i], scale_factor); } } DECLARE_CONVERTER(fc64, 1, sc16_item32_be, 1, PRIORITY_SIMD){ const fc64_t *input = reinterpret_cast(inputs[0]); item32_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor); #define convert_fc64_1_to_item32_1_bswap_guts(_al_) \ for (; i+3 < nsamps; i+=4){ \ /* load from input */ \ __m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+0)); \ __m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+1)); \ __m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+2)); \ __m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+3)); \ \ /* convert and scale */ \ __m128i tmpi0 = _mm_cvttpd_epi32(_mm_mul_pd(tmp0, scalar)); \ __m128i tmpi1 = _mm_cvttpd_epi32(_mm_mul_pd(tmp1, scalar)); \ __m128i tmpilo = _mm_unpacklo_epi64(tmpi0, tmpi1); \ __m128i tmpi2 = _mm_cvttpd_epi32(_mm_mul_pd(tmp2, scalar)); \ __m128i tmpi3 = _mm_cvttpd_epi32(_mm_mul_pd(tmp3, scalar)); \ __m128i tmpihi = _mm_unpacklo_epi64(tmpi2, tmpi3); \ \ /* pack + byteswap -> byteswap 16 bit words */ \ __m128i tmpi = _mm_packs_epi32(tmpilo, tmpihi); \ tmpi = _mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); \ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i *>(output+i), tmpi); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(input) & 0xf) == 0){ convert_fc64_1_to_item32_1_bswap_guts(_) } else{ convert_fc64_1_to_item32_1_bswap_guts(u_) } //convert remainder for (; i < nsamps; i++){ output[i] = uhd::byteswap(fc64_to_item32_sc16(input[i], scale_factor)); } } DECLARE_CONVERTER(sc16_item32_le, 1, fc64, 1, PRIORITY_SIMD){ const item32_t *input = reinterpret_cast(inputs[0]); fc64_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor/(1 << 16)); const __m128i zeroi = _mm_setzero_si128(); #define convert_item32_1_to_fc64_1_nswap_guts(_al_) \ for (; i+3 < nsamps; i+=4){ \ /* load from input */ \ __m128i tmpi = _mm_loadu_si128(reinterpret_cast(input+i)); \ \ /* unpack + swap 16-bit pairs */ \ tmpi = _mm_shufflelo_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \ tmpi = _mm_shufflehi_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \ __m128i tmpilo = _mm_unpacklo_epi16(zeroi, tmpi); /* value in upper 16 bits */ \ __m128i tmpihi = _mm_unpackhi_epi16(zeroi, tmpi); \ \ /* convert and scale */ \ __m128d tmp0 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar); \ tmpilo = _mm_unpackhi_epi64(tmpilo, zeroi); \ __m128d tmp1 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar); \ __m128d tmp2 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar); \ tmpihi = _mm_unpackhi_epi64(tmpihi, zeroi); \ __m128d tmp3 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar); \ \ /* store to output */ \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+0), tmp0); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+1), tmp1); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+2), tmp2); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+3), tmp3); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(output) & 0xf) == 0){ convert_item32_1_to_fc64_1_nswap_guts(_) } else{ convert_item32_1_to_fc64_1_nswap_guts(u_) } //convert remainder for (; i < nsamps; i++){ output[i] = item32_sc16_to_fc64(input[i], scale_factor); } } DECLARE_CONVERTER(sc16_item32_be, 1, fc64, 1, PRIORITY_SIMD){ const item32_t *input = reinterpret_cast(inputs[0]); fc64_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor/(1 << 16)); const __m128i zeroi = _mm_setzero_si128(); #define convert_item32_1_to_fc64_1_bswap_guts(_al_) \ for (; i+3 < nsamps; i+=4){ \ /* load from input */ \ __m128i tmpi = _mm_loadu_si128(reinterpret_cast(input+i)); \ \ /* byteswap + unpack -> byteswap 16 bit words */ \ tmpi = _mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); \ __m128i tmpilo = _mm_unpacklo_epi16(zeroi, tmpi); /* value in upper 16 bits */ \ __m128i tmpihi = _mm_unpackhi_epi16(zeroi, tmpi); \ \ /* convert and scale */ \ __m128d tmp0 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar); \ tmpilo = _mm_unpackhi_epi64(tmpilo, zeroi); \ __m128d tmp1 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar); \ __m128d tmp2 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar); \ tmpihi = _mm_unpackhi_epi64(tmpihi, zeroi); \ __m128d tmp3 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar); \ \ /* store to output */ \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+0), tmp0); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+1), tmp1); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+2), tmp2); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+3), tmp3); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(output) & 0xf) == 0){ convert_item32_1_to_fc64_1_bswap_guts(_) } else{ convert_item32_1_to_fc64_1_bswap_guts(u_) } //convert remainder for (; i < nsamps; i++){ output[i] = item32_sc16_to_fc64(uhd::byteswap(input[i]), scale_factor); } }