// // Copyright 2012 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "convert_common.hpp" #include #include using namespace uhd::convert; UHD_INLINE __m128i pack_sc8_item32_4x( const __m128i &in0, const __m128i &in1, const __m128i &in2, const __m128i &in3 ){ const __m128i lo = _mm_packs_epi32(in0, in1); const __m128i hi = _mm_packs_epi32(in2, in3); return _mm_packs_epi16(lo, hi); } UHD_INLINE __m128i pack_sc32_4x_be( const __m128d &lo, const __m128d &hi, const __m128d &scalar ){ const __m128i tmpi_lo = _mm_cvttpd_epi32(_mm_mul_pd(hi, scalar)); const __m128i tmpi_hi = _mm_cvttpd_epi32(_mm_mul_pd(lo, scalar)); return _mm_unpacklo_epi64(tmpi_lo, tmpi_hi); } UHD_INLINE __m128i pack_sc32_4x_le( const __m128d &lo, const __m128d &hi, const __m128d &scalar ){ const __m128i tmpi_lo = _mm_cvttpd_epi32(_mm_mul_pd(lo, scalar)); const __m128i tmpi_hi = _mm_cvttpd_epi32(_mm_mul_pd(hi, scalar)); const __m128i tmpi = _mm_unpacklo_epi64(tmpi_lo, tmpi_hi); return _mm_shuffle_epi32(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); } DECLARE_CONVERTER(fc64, 1, sc8_item32_be, 1, PRIORITY_SIMD){ const fc64_t *input = reinterpret_cast(inputs[0]); item32_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor); #define convert_fc64_1_to_sc8_item32_1_bswap_guts(_al_) \ for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \ /* load from input */ \ __m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+0)); \ __m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+1)); \ __m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+2)); \ __m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+3)); \ __m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+4)); \ __m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+5)); \ __m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+6)); \ __m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+7)); \ \ /* interleave */ \ const __m128i tmpi = pack_sc8_item32_4x( \ pack_sc32_4x_be(tmp0, tmp1, scalar), \ pack_sc32_4x_be(tmp2, tmp3, scalar), \ pack_sc32_4x_be(tmp4, tmp5, scalar), \ pack_sc32_4x_be(tmp6, tmp7, scalar) \ ); \ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(input) & 0xf) == 0){ convert_fc64_1_to_sc8_item32_1_bswap_guts(_) } else{ convert_fc64_1_to_sc8_item32_1_bswap_guts(u_) } //convert remainder const size_t num_pairs = nsamps/2; for (size_t j = i/2; j < num_pairs; j++, i+=2){ const item32_t item = fc64_to_item32_sc8(input[i], input[i+1], scale_factor); output[j] = uhd::byteswap(item); } if (nsamps != num_pairs*2){ const item32_t item = fc64_to_item32_sc8(input[nsamps-1], 0, scale_factor); output[num_pairs] = uhd::byteswap(item); } } DECLARE_CONVERTER(fc64, 1, sc8_item32_le, 1, PRIORITY_SIMD){ const fc64_t *input = reinterpret_cast(inputs[0]); item32_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor); #define convert_fc64_1_to_sc8_item32_1_nswap_guts(_al_) \ for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \ /* load from input */ \ __m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+0)); \ __m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+1)); \ __m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+2)); \ __m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+3)); \ __m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+4)); \ __m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+5)); \ __m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+6)); \ __m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+7)); \ \ /* interleave */ \ const __m128i tmpi = pack_sc8_item32_4x( \ pack_sc32_4x_le(tmp0, tmp1, scalar), \ pack_sc32_4x_le(tmp2, tmp3, scalar), \ pack_sc32_4x_le(tmp4, tmp5, scalar), \ pack_sc32_4x_le(tmp6, tmp7, scalar) \ ); \ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(input) & 0xf) == 0){ convert_fc64_1_to_sc8_item32_1_nswap_guts(_) } else{ convert_fc64_1_to_sc8_item32_1_nswap_guts(u_) } //convert remainder const size_t num_pairs = nsamps/2; for (size_t j = i/2; j < num_pairs; j++, i+=2){ const item32_t item = fc64_to_item32_sc8(input[i], input[i+1], scale_factor); output[j] = (item); } if (nsamps != num_pairs*2){ const item32_t item = fc64_to_item32_sc8(input[nsamps-1], 0, scale_factor); output[num_pairs] = (item); } }