//
// Copyright 2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "convert_common.hpp"
#include
#include
using namespace uhd::convert;
UHD_INLINE __m128i pack_sc8_item32_4x(
const __m128i &in0, const __m128i &in1,
const __m128i &in2, const __m128i &in3
){
const __m128i lo = _mm_packs_epi32(in0, in1);
const __m128i hi = _mm_packs_epi32(in2, in3);
return _mm_packs_epi16(lo, hi);
}
UHD_INLINE __m128i pack_sc32_4x_be(
const __m128d &lo, const __m128d &hi,
const __m128d &scalar
){
const __m128i tmpi_lo = _mm_cvttpd_epi32(_mm_mul_pd(hi, scalar));
const __m128i tmpi_hi = _mm_cvttpd_epi32(_mm_mul_pd(lo, scalar));
return _mm_unpacklo_epi64(tmpi_lo, tmpi_hi);
}
UHD_INLINE __m128i pack_sc32_4x_le(
const __m128d &lo, const __m128d &hi,
const __m128d &scalar
){
const __m128i tmpi_lo = _mm_cvttpd_epi32(_mm_mul_pd(lo, scalar));
const __m128i tmpi_hi = _mm_cvttpd_epi32(_mm_mul_pd(hi, scalar));
const __m128i tmpi = _mm_unpacklo_epi64(tmpi_lo, tmpi_hi);
return _mm_shuffle_epi32(tmpi, _MM_SHUFFLE(2, 3, 0, 1));
}
DECLARE_CONVERTER(fc64, 1, sc8_item32_be, 1, PRIORITY_SIMD){
const fc64_t *input = reinterpret_cast(inputs[0]);
item32_t *output = reinterpret_cast(outputs[0]);
const __m128d scalar = _mm_set1_pd(scale_factor);
#define convert_fc64_1_to_sc8_item32_1_bswap_guts(_al_) \
for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \
/* load from input */ \
__m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+0)); \
__m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+1)); \
__m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+2)); \
__m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+3)); \
__m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+4)); \
__m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+5)); \
__m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+6)); \
__m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+7)); \
\
/* interleave */ \
const __m128i tmpi = pack_sc8_item32_4x( \
pack_sc32_4x_be(tmp0, tmp1, scalar), \
pack_sc32_4x_be(tmp2, tmp3, scalar), \
pack_sc32_4x_be(tmp4, tmp5, scalar), \
pack_sc32_4x_be(tmp6, tmp7, scalar) \
); \
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \
} \
size_t i = 0;
//dispatch according to alignment
if ((size_t(input) & 0xf) == 0){
convert_fc64_1_to_sc8_item32_1_bswap_guts(_)
}
else{
convert_fc64_1_to_sc8_item32_1_bswap_guts(u_)
}
//convert remainder
const size_t num_pairs = nsamps/2;
for (size_t j = i/2; j < num_pairs; j++, i+=2){
const item32_t item = fc64_to_item32_sc8(input[i], input[i+1], scale_factor);
output[j] = uhd::byteswap(item);
}
if (nsamps != num_pairs*2){
const item32_t item = fc64_to_item32_sc8(input[nsamps-1], 0, scale_factor);
output[num_pairs] = uhd::byteswap(item);
}
}
DECLARE_CONVERTER(fc64, 1, sc8_item32_le, 1, PRIORITY_SIMD){
const fc64_t *input = reinterpret_cast(inputs[0]);
item32_t *output = reinterpret_cast(outputs[0]);
const __m128d scalar = _mm_set1_pd(scale_factor);
#define convert_fc64_1_to_sc8_item32_1_nswap_guts(_al_) \
for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \
/* load from input */ \
__m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+0)); \
__m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+1)); \
__m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+2)); \
__m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+3)); \
__m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+4)); \
__m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+5)); \
__m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+6)); \
__m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+7)); \
\
/* interleave */ \
const __m128i tmpi = pack_sc8_item32_4x( \
pack_sc32_4x_le(tmp0, tmp1, scalar), \
pack_sc32_4x_le(tmp2, tmp3, scalar), \
pack_sc32_4x_le(tmp4, tmp5, scalar), \
pack_sc32_4x_le(tmp6, tmp7, scalar) \
); \
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \
} \
size_t i = 0;
//dispatch according to alignment
if ((size_t(input) & 0xf) == 0){
convert_fc64_1_to_sc8_item32_1_nswap_guts(_)
}
else{
convert_fc64_1_to_sc8_item32_1_nswap_guts(u_)
}
//convert remainder
const size_t num_pairs = nsamps/2;
for (size_t j = i/2; j < num_pairs; j++, i+=2){
const item32_t item = fc64_to_item32_sc8(input[i], input[i+1], scale_factor);
output[j] = (item);
}
if (nsamps != num_pairs*2){
const item32_t item = fc64_to_item32_sc8(input[nsamps-1], 0, scale_factor);
output[num_pairs] = (item);
}
}