// // Copyright 2011-2013 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #ifndef INCLUDED_LIBUHD_CONVERT_COMMON_HPP #define INCLUDED_LIBUHD_CONVERT_COMMON_HPP #include #include #include #include #include #define _DECLARE_CONVERTER(name, in_form, num_in, out_form, num_out, prio) \ struct name : public uhd::convert::converter \ { \ static sptr make(void) \ { \ return sptr(new name()); \ } \ double scale_factor; \ void set_scalar(const double s) \ { \ scale_factor = s; \ } \ void operator()(const input_type&, const output_type&, const size_t); \ }; \ UHD_STATIC_BLOCK(__register_##name##_##prio) \ { \ uhd::convert::id_type id; \ id.input_format = #in_form; \ id.num_inputs = num_in; \ id.output_format = #out_form; \ id.num_outputs = num_out; \ uhd::convert::register_converter(id, &name::make, prio); \ } \ void name::operator()( \ const input_type& inputs, const output_type& outputs, const size_t nsamps) /*! Convenience macro to declare a single-function converter * * Most converters consist of a single for loop, and can make use of * this macro for declaration and registering. * * Following this macro should be a function block in curly braces * which runs the conversion. Available parameters in this function block * are: * - `inputs`: Vector of pointers to the input data. Size of the vector == `num_in` * - `outputs`: Vector of pointers to where the output data goes. Size of the vector == * `num_out` * - `nsamps`: Number of items per input buffer to convert * - `scale_factor`: Scaling factor for float conversions */ #define DECLARE_CONVERTER(in_form, num_in, out_form, num_out, prio) \ _DECLARE_CONVERTER(__convert_##in_form##_##num_in##_##out_form##_##num_out##_##prio, \ in_form, \ num_in, \ out_form, \ num_out, \ prio) /*********************************************************************** * Setup priorities **********************************************************************/ static const int PRIORITY_GENERAL = 0; static const int PRIORITY_EMPTY = -1; #ifdef __ARM_NEON__ static const int PRIORITY_SIMD = 2; static const int PRIORITY_TABLE = 1; // tables require large cache, so they are slower on arm #else // We used to have ORC, too, so SIMD is 3 static const int PRIORITY_SIMD = 3; static const int PRIORITY_TABLE = 1; #endif /*********************************************************************** * Typedefs **********************************************************************/ typedef std::complex fc64_t; typedef std::complex fc32_t; typedef std::complex sc32_t; typedef std::complex sc16_t; typedef std::complex sc8_t; typedef double f64_t; typedef float f32_t; typedef int32_t s32_t; typedef int16_t s16_t; typedef int8_t s8_t; typedef uint8_t u8_t; typedef uint32_t item32_t; typedef item32_t (*xtox_t)(item32_t); template const T clamp(const U v) { constexpr T min_t = std::numeric_limits::min(); constexpr T max_t = std::numeric_limits::max(); return (v < min_t) ? min_t : (v > max_t) ? max_t : T(v); } /*********************************************************************** * Convert xx to items32 sc16 buffer **********************************************************************/ template UHD_INLINE item32_t xx_to_item32_sc16_x1( const std::complex& num, const double scale_factor) { uint16_t real = clamp(num.real() * float(scale_factor)); uint16_t imag = clamp(num.imag() * float(scale_factor)); return (item32_t(real) << 16) | (item32_t(imag) << 0); } template <> UHD_INLINE item32_t xx_to_item32_sc16_x1(const sc16_t& num, const double) { uint16_t real = int16_t(num.real()); uint16_t imag = int16_t(num.imag()); return (item32_t(real) << 16) | (item32_t(imag) << 0); } template UHD_INLINE void xx_to_item32_sc16(const std::complex* input, item32_t* output, const size_t nsamps, const double scale_factor) { for (size_t i = 0; i < nsamps; i++) { const item32_t item = xx_to_item32_sc16_x1(input[i], scale_factor); output[i] = to_wire(item); } } template UHD_FORCE_INLINE sc16_t xx_to_sc16_x1( const std::complex& num, const double scale_factor) { uint16_t real = clamp(num.real() * float(scale_factor)); uint16_t imag = clamp(num.imag() * float(scale_factor)); return sc16_t(real, imag); } template UHD_FORCE_INLINE void xx_to_chdr_sc16(const std::complex* input, sc16_t* output, const size_t nsamps, const double scale_factor) { for (size_t i = 0; i < nsamps; i++) { output[i] = xx_to_sc16_x1(input[i], scale_factor); } } /*********************************************************************** * Convert items32 sc16 buffer to xx **********************************************************************/ template UHD_INLINE std::complex item32_sc16_x1_to_xx( const item32_t item, const double scale_factor) { return std::complex(T(int16_t(item >> 16) * float(scale_factor)), T(int16_t(item >> 0) * float(scale_factor))); } template <> UHD_INLINE sc16_t item32_sc16_x1_to_xx(const item32_t item, const double) { return sc16_t(int16_t(item >> 16), int16_t(item >> 0)); } template UHD_INLINE void item32_sc16_to_xx(const item32_t* input, std::complex* output, const size_t nsamps, const double scale_factor) { for (size_t i = 0; i < nsamps; i++) { const item32_t item_i = to_host(input[i]); output[i] = item32_sc16_x1_to_xx(item_i, scale_factor); } } template UHD_FORCE_INLINE std::complex chdr_sc16_x1_to_xx( const sc16_t item, const double scale_factor) { return std::complex( T(item.real()) * T(scale_factor), T(item.imag()) * T(scale_factor)); } template UHD_FORCE_INLINE void chdr_sc16_to_xx(const sc16_t* input, std::complex* output, const size_t nsamps, const double scale_factor) { for (size_t i = 0; i < nsamps; i++) { output[i] = chdr_sc16_x1_to_xx(input[i], scale_factor); } } /*********************************************************************** * Convert xx to items32 sc8 buffer **********************************************************************/ template UHD_INLINE item32_t xx_to_item32_sc8_x1( const std::complex& in0, const std::complex& in1, const double scale_factor) { uint8_t real1 = clamp(in0.real() * float(scale_factor)); uint8_t imag1 = clamp(in0.imag() * float(scale_factor)); uint8_t real0 = clamp(in1.real() * float(scale_factor)); uint8_t imag0 = clamp(in1.imag() * float(scale_factor)); return (item32_t(real0) << 8) | (item32_t(imag0) << 0) | (item32_t(real1) << 24) | (item32_t(imag1) << 16); } template <> UHD_INLINE item32_t xx_to_item32_sc8_x1( const sc16_t& in0, const sc16_t& in1, const double) { uint8_t real1 = clamp(in0.real()); uint8_t imag1 = clamp(in0.imag()); uint8_t real0 = clamp(in1.real()); uint8_t imag0 = clamp(in1.imag()); return (item32_t(real0) << 8) | (item32_t(imag0) << 0) | (item32_t(real1) << 24) | (item32_t(imag1) << 16); } template <> UHD_INLINE item32_t xx_to_item32_sc8_x1(const sc8_t& in0, const sc8_t& in1, const double) { uint8_t real1 = int8_t(in0.real()); uint8_t imag1 = int8_t(in0.imag()); uint8_t real0 = int8_t(in1.real()); uint8_t imag0 = int8_t(in1.imag()); return (item32_t(real0) << 8) | (item32_t(imag0) << 0) | (item32_t(real1) << 24) | (item32_t(imag1) << 16); } template UHD_INLINE void xx_to_item32_sc8(const std::complex* input, item32_t* output, const size_t nsamps, const double scale_factor) { const size_t num_pairs = nsamps / 2; for (size_t i = 0, j = 0; i < num_pairs; i++, j += 2) { const item32_t item = xx_to_item32_sc8_x1(input[j], input[j + 1], scale_factor); output[i] = to_wire(item); } if (nsamps != num_pairs * 2) { const item32_t item = xx_to_item32_sc8_x1(input[nsamps - 1], std::complex(0), scale_factor); output[num_pairs] = to_wire(item); } } /*********************************************************************** * Convert items32 sc8 buffer to xx **********************************************************************/ template UHD_INLINE void item32_sc8_x1_to_xx(const item32_t item, std::complex& out0, std::complex& out1, const double scale_factor) { out1 = std::complex(T(int8_t(item >> 8) * float(scale_factor)), T(int8_t(item >> 0) * float(scale_factor))); out0 = std::complex(T(int8_t(item >> 24) * float(scale_factor)), T(int8_t(item >> 16) * float(scale_factor))); } template <> UHD_INLINE void item32_sc8_x1_to_xx( const item32_t item, sc16_t& out0, sc16_t& out1, const double) { out1 = sc16_t(int16_t(int8_t(item >> 8)), int16_t(int8_t(item >> 0))); out0 = sc16_t(int16_t(int8_t(item >> 24)), int16_t(int8_t(item >> 16))); } template <> UHD_INLINE void item32_sc8_x1_to_xx( const item32_t item, sc8_t& out0, sc8_t& out1, const double) { out1 = sc8_t(int8_t(int8_t(item >> 8)), int8_t(int8_t(item >> 0))); out0 = sc8_t(int8_t(int8_t(item >> 24)), int8_t(int8_t(item >> 16))); } template UHD_INLINE void item32_sc8_to_xx(const item32_t* input, std::complex* output, const size_t nsamps, const double scale_factor) { input = reinterpret_cast(size_t(input) & ~0x3); std::complex dummy; size_t num_samps = nsamps; if ((size_t(input) & 0x3) != 0) { const item32_t item0 = to_host(*input++); item32_sc8_x1_to_xx(item0, dummy, *output++, scale_factor); num_samps--; } const size_t num_pairs = num_samps / 2; for (size_t i = 0, j = 0; i < num_pairs; i++, j += 2) { const item32_t item_i = to_host(input[i]); item32_sc8_x1_to_xx(item_i, output[j], output[j + 1], scale_factor); } if (num_samps != num_pairs * 2) { const item32_t item_n = to_host(input[num_pairs]); item32_sc8_x1_to_xx(item_n, output[num_samps - 1], dummy, scale_factor); } } #endif /* INCLUDED_LIBUHD_CONVERT_COMMON_HPP */