//
// Copyright 2011-2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#ifndef INCLUDED_LIBUHD_CONVERT_COMMON_HPP
#define INCLUDED_LIBUHD_CONVERT_COMMON_HPP
#include
#include
#include
#include
#define _DECLARE_CONVERTER(name, in_form, num_in, out_form, num_out, prio) \
struct name : public uhd::convert::converter{ \
static sptr make(void){return sptr(new name());} \
double scale_factor; \
void set_scalar(const double s){scale_factor = s;} \
void operator()(const input_type&, const output_type&, const size_t); \
}; \
UHD_STATIC_BLOCK(__register_##name##_##prio){ \
uhd::convert::id_type id; \
id.input_format = #in_form; \
id.num_inputs = num_in; \
id.output_format = #out_form; \
id.num_outputs = num_out; \
uhd::convert::register_converter(id, &name::make, prio); \
} \
void name::operator()( \
const input_type &inputs, const output_type &outputs, const size_t nsamps \
)
/*! Convenience macro to declare a single-function converter
*
* Most converters consist of a single for loop, and can make use of
* this macro for declaration and registering.
*
* Following this macro should be a function block in curly braces
* which runs the conversion. Available parameters in this function block
* are:
* - `inputs`: Vector of pointers to the input data. Size of the vector == `num_in`
* - `outputs`: Vector of pointers to where the output data goes. Size of the vector == `num_out`
* - `nsamps`: Number of items per input buffer to convert
* - `scale_factor`: Scaling factor for float conversions
*/
#define DECLARE_CONVERTER(in_form, num_in, out_form, num_out, prio) \
_DECLARE_CONVERTER(__convert_##in_form##_##num_in##_##out_form##_##num_out##_##prio, in_form, num_in, out_form, num_out, prio)
/***********************************************************************
* Setup priorities
**********************************************************************/
static const int PRIORITY_GENERAL = 0;
static const int PRIORITY_EMPTY = -1;
#ifdef __ARM_NEON__
static const int PRIORITY_SIMD = 2;
static const int PRIORITY_TABLE = 1; //tables require large cache, so they are slower on arm
#else
// We used to have ORC, too, so SIMD is 3
static const int PRIORITY_SIMD = 3;
static const int PRIORITY_TABLE = 1;
#endif
/***********************************************************************
* Typedefs
**********************************************************************/
typedef std::complex fc64_t;
typedef std::complex fc32_t;
typedef std::complex sc32_t;
typedef std::complex sc16_t;
typedef std::complex sc8_t;
typedef double f64_t;
typedef float f32_t;
typedef int32_t s32_t;
typedef int16_t s16_t;
typedef int8_t s8_t;
typedef uint8_t u8_t;
typedef uint32_t item32_t;
typedef item32_t (*xtox_t)(item32_t);
/***********************************************************************
* Convert xx to items32 sc16 buffer
**********************************************************************/
template UHD_INLINE item32_t xx_to_item32_sc16_x1(
const std::complex &num, const double scale_factor
){
uint16_t real = int16_t(num.real()*float(scale_factor));
uint16_t imag = int16_t(num.imag()*float(scale_factor));
return (item32_t(real) << 16) | (item32_t(imag) << 0);
}
template <> UHD_INLINE item32_t xx_to_item32_sc16_x1(
const sc16_t &num, const double
){
uint16_t real = int16_t(num.real());
uint16_t imag = int16_t(num.imag());
return (item32_t(real) << 16) | (item32_t(imag) << 0);
}
template
UHD_INLINE void xx_to_item32_sc16(
const std::complex *input,
item32_t *output,
const size_t nsamps,
const double scale_factor
){
for (size_t i = 0; i < nsamps; i++){
const item32_t item = xx_to_item32_sc16_x1(input[i], scale_factor);
output[i] = to_wire(item);
}
}
/***********************************************************************
* Convert items32 sc16 buffer to xx
**********************************************************************/
template UHD_INLINE std::complex item32_sc16_x1_to_xx(
const item32_t item, const double scale_factor
){
return std::complex(
T(int16_t(item >> 16)*float(scale_factor)),
T(int16_t(item >> 0)*float(scale_factor))
);
}
template <> UHD_INLINE sc16_t item32_sc16_x1_to_xx(
const item32_t item, const double
){
return sc16_t(
int16_t(item >> 16), int16_t(item >> 0)
);
}
template
UHD_INLINE void item32_sc16_to_xx(
const item32_t *input,
std::complex *output,
const size_t nsamps,
const double scale_factor
){
for (size_t i = 0; i < nsamps; i++){
const item32_t item_i = to_host(input[i]);
output[i] = item32_sc16_x1_to_xx(item_i, scale_factor);
}
}
/***********************************************************************
* Convert xx to items32 sc8 buffer
**********************************************************************/
template UHD_INLINE item32_t xx_to_item32_sc8_x1(
const std::complex &in0, const std::complex &in1, const double scale_factor
){
uint8_t real1 = int8_t(in0.real()*float(scale_factor));
uint8_t imag1 = int8_t(in0.imag()*float(scale_factor));
uint8_t real0 = int8_t(in1.real()*float(scale_factor));
uint8_t imag0 = int8_t(in1.imag()*float(scale_factor));
return
(item32_t(real0) << 8) | (item32_t(imag0) << 0) |
(item32_t(real1) << 24) | (item32_t(imag1) << 16)
;
}
template <> UHD_INLINE item32_t xx_to_item32_sc8_x1(
const sc16_t &in0, const sc16_t &in1, const double
){
uint8_t real1 = int8_t(in0.real());
uint8_t imag1 = int8_t(in0.imag());
uint8_t real0 = int8_t(in1.real());
uint8_t imag0 = int8_t(in1.imag());
return
(item32_t(real0) << 8) | (item32_t(imag0) << 0) |
(item32_t(real1) << 24) | (item32_t(imag1) << 16)
;
}
template <> UHD_INLINE item32_t xx_to_item32_sc8_x1(
const sc8_t &in0, const sc8_t &in1, const double
){
uint8_t real1 = int8_t(in0.real());
uint8_t imag1 = int8_t(in0.imag());
uint8_t real0 = int8_t(in1.real());
uint8_t imag0 = int8_t(in1.imag());
return
(item32_t(real0) << 8) | (item32_t(imag0) << 0) |
(item32_t(real1) << 24) | (item32_t(imag1) << 16)
;
}
template
UHD_INLINE void xx_to_item32_sc8(
const std::complex *input,
item32_t *output,
const size_t nsamps,
const double scale_factor
){
const size_t num_pairs = nsamps/2;
for (size_t i = 0, j = 0; i < num_pairs; i++, j+=2){
const item32_t item = xx_to_item32_sc8_x1(input[j], input[j+1], scale_factor);
output[i] = to_wire(item);
}
if (nsamps != num_pairs*2){
const item32_t item = xx_to_item32_sc8_x1(input[nsamps-1], std::complex(0), scale_factor);
output[num_pairs] = to_wire(item);
}
}
/***********************************************************************
* Convert items32 sc8 buffer to xx
**********************************************************************/
template UHD_INLINE void item32_sc8_x1_to_xx(
const item32_t item, std::complex &out0, std::complex &out1, const double scale_factor
){
out1 = std::complex(
T(int8_t(item >> 8)*float(scale_factor)),
T(int8_t(item >> 0)*float(scale_factor))
);
out0 = std::complex(
T(int8_t(item >> 24)*float(scale_factor)),
T(int8_t(item >> 16)*float(scale_factor))
);
}
template <> UHD_INLINE void item32_sc8_x1_to_xx(
const item32_t item, sc16_t &out0, sc16_t &out1, const double
){
out1 = sc16_t(
int16_t(int8_t(item >> 8)),
int16_t(int8_t(item >> 0))
);
out0 = sc16_t(
int16_t(int8_t(item >> 24)),
int16_t(int8_t(item >> 16))
);
}
template <> UHD_INLINE void item32_sc8_x1_to_xx(
const item32_t item, sc8_t &out0, sc8_t &out1, const double
){
out1 = sc8_t(
int8_t(int8_t(item >> 8)),
int8_t(int8_t(item >> 0))
);
out0 = sc8_t(
int8_t(int8_t(item >> 24)),
int8_t(int8_t(item >> 16))
);
}
template
UHD_INLINE void item32_sc8_to_xx(
const item32_t *input,
std::complex *output,
const size_t nsamps,
const double scale_factor
){
input = reinterpret_cast(size_t(input) & ~0x3);
std::complex dummy;
size_t num_samps = nsamps;
if ((size_t(input) & 0x3) != 0){
const item32_t item0 = to_host(*input++);
item32_sc8_x1_to_xx(item0, dummy, *output++, scale_factor);
num_samps--;
}
const size_t num_pairs = num_samps/2;
for (size_t i = 0, j = 0; i < num_pairs; i++, j+=2){
const item32_t item_i = to_host(input[i]);
item32_sc8_x1_to_xx(item_i, output[j], output[j+1], scale_factor);
}
if (num_samps != num_pairs*2){
const item32_t item_n = to_host(input[num_pairs]);
item32_sc8_x1_to_xx(item_n, output[num_samps-1], dummy, scale_factor);
}
}
#endif /* INCLUDED_LIBUHD_CONVERT_COMMON_HPP */