//
// Copyright 2010-2012,2014-2015 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace po = boost::program_options;
/***********************************************************************
* Signal handlers
**********************************************************************/
static bool stop_signal_called = false;
void sig_int_handler(int){stop_signal_called = true;}
/***********************************************************************
* Utilities
**********************************************************************/
//! Change to filename, e.g. from usrp_samples.dat to usrp_samples.00.dat,
// but only if multiple names are to be generated.
std::string generate_out_filename(const std::string &base_fn, size_t n_names, size_t this_name)
{
if (n_names == 1) {
return base_fn;
}
boost::filesystem::path base_fn_fp(base_fn);
base_fn_fp.replace_extension(
boost::filesystem::path(
str(boost::format("%02d%s") % this_name % base_fn_fp.extension().string())
)
);
return base_fn_fp.string();
}
/***********************************************************************
* Waveform generators
**********************************************************************/
static const size_t wave_table_len = 8192;
class wave_table_class{
public:
wave_table_class(const std::string &wave_type, const float ampl):
_wave_table(wave_table_len)
{
//compute real wave table with 1.0 amplitude
std::vector real_wave_table(wave_table_len);
if (wave_type == "CONST"){
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = 1.0;
}
else if (wave_type == "SQUARE"){
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = (i < wave_table_len/2)? 0.0 : 1.0;
}
else if (wave_type == "RAMP"){
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = 2.0*i/(wave_table_len-1) - 1.0;
}
else if (wave_type == "SINE"){
static const double tau = 2*std::acos(-1.0);
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = std::sin((tau*i)/wave_table_len);
}
else throw std::runtime_error("unknown waveform type: " + wave_type);
//compute i and q pairs with 90% offset and scale to amplitude
for (size_t i = 0; i < wave_table_len; i++){
const size_t q = (i+(3*wave_table_len)/4)%wave_table_len;
_wave_table[i] = std::complex(ampl*real_wave_table[i], ampl*real_wave_table[q]);
}
}
inline std::complex operator()(const size_t index) const{
return _wave_table[index % wave_table_len];
}
private:
std::vector > _wave_table;
};
/***********************************************************************
* transmit_worker function
* A function to be used as a boost::thread_group thread for transmitting
**********************************************************************/
void transmit_worker(
std::vector > buff,
wave_table_class wave_table,
uhd::tx_streamer::sptr tx_streamer,
uhd::tx_metadata_t metadata,
size_t step,
size_t index,
int num_channels
){
std::vector *> buffs(num_channels, &buff.front());
//send data until the signal handler gets called
while(not stop_signal_called){
//fill the buffer with the waveform
for (size_t n = 0; n < buff.size(); n++){
buff[n] = wave_table(index += step);
}
//send the entire contents of the buffer
tx_streamer->send(buffs, buff.size(), metadata);
metadata.start_of_burst = false;
metadata.has_time_spec = false;
}
//send a mini EOB packet
metadata.end_of_burst = true;
tx_streamer->send("", 0, metadata);
}
/***********************************************************************
* recv_to_file function
**********************************************************************/
template void recv_to_file(
uhd::usrp::multi_usrp::sptr usrp,
const std::string &cpu_format,
const std::string &wire_format,
const std::string &file,
size_t samps_per_buff,
int num_requested_samples,
float settling_time,
std::vector rx_channel_nums
){
int num_total_samps = 0;
//create a receive streamer
uhd::stream_args_t stream_args(cpu_format,wire_format);
stream_args.channels = rx_channel_nums;
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
// Prepare buffers for received samples and metadata
uhd::rx_metadata_t md;
std::vector > buffs(
rx_channel_nums.size(), std::vector< samp_type >(samps_per_buff)
);
//create a vector of pointers to point to each of the channel buffers
std::vector buff_ptrs;
for (size_t i = 0; i < buffs.size(); i++) {
buff_ptrs.push_back(&buffs[i].front());
}
// Create one ofstream object per channel
// (use shared_ptr because ofstream is non-copyable)
std::vector > outfiles;
for (size_t i = 0; i < buffs.size(); i++) {
const std::string this_filename = generate_out_filename(file, buffs.size(), i);
outfiles.push_back(boost::shared_ptr(new std::ofstream(this_filename.c_str(), std::ofstream::binary)));
}
UHD_ASSERT_THROW(outfiles.size() == buffs.size());
UHD_ASSERT_THROW(buffs.size() == rx_channel_nums.size());
bool overflow_message = true;
float timeout = settling_time + 0.1f; //expected settling time + padding for first recv
//setup streaming
uhd::stream_cmd_t stream_cmd((num_requested_samples == 0)?
uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS:
uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE
);
stream_cmd.num_samps = num_requested_samples;
stream_cmd.stream_now = false;
stream_cmd.time_spec = uhd::time_spec_t(settling_time);
rx_stream->issue_stream_cmd(stream_cmd);
while(not stop_signal_called and (num_requested_samples != num_total_samps or num_requested_samples == 0)){
size_t num_rx_samps = rx_stream->recv(buff_ptrs, samps_per_buff, md, timeout);
timeout = 0.1f; //small timeout for subsequent recv
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
std::cout << boost::format("Timeout while streaming") << std::endl;
break;
}
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW){
if (overflow_message){
overflow_message = false;
std::cerr << boost::format(
"Got an overflow indication. Please consider the following:\n"
" Your write medium must sustain a rate of %fMB/s.\n"
" Dropped samples will not be written to the file.\n"
" Please modify this example for your purposes.\n"
" This message will not appear again.\n"
) % (usrp->get_rx_rate()*sizeof(samp_type)/1e6);
}
continue;
}
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){
throw std::runtime_error(str(boost::format(
"Receiver error %s"
) % md.strerror()));
}
num_total_samps += num_rx_samps;
for (size_t i = 0; i < outfiles.size(); i++) {
outfiles[i]->write((const char*) buff_ptrs[i], num_rx_samps*sizeof(samp_type));
}
}
// Shut down receiver
stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS;
rx_stream->issue_stream_cmd(stream_cmd);
// Close files
for (size_t i = 0; i < outfiles.size(); i++) {
outfiles[i]->close();
}
}
/***********************************************************************
* Main function
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//transmit variables to be set by po
std::string tx_args, wave_type, tx_ant, tx_subdev, ref, otw, tx_channels;
double tx_rate, tx_freq, tx_gain, wave_freq, tx_bw;
float ampl;
//receive variables to be set by po
std::string rx_args, file, type, rx_ant, rx_subdev, rx_channels;
size_t total_num_samps, spb;
double rx_rate, rx_freq, rx_gain, rx_bw;
float settling;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("tx-args", po::value(&tx_args)->default_value(""), "uhd transmit device address args")
("rx-args", po::value(&rx_args)->default_value(""), "uhd receive device address args")
("file", po::value(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to")
("type", po::value(&type)->default_value("short"), "sample type in file: double, float, or short")
("nsamps", po::value(&total_num_samps)->default_value(0), "total number of samples to receive")
("settling", po::value(&settling)->default_value(float(0.2)), "settling time (seconds) before receiving")
("spb", po::value(&spb)->default_value(0), "samples per buffer, 0 for default")
("tx-rate", po::value(&tx_rate), "rate of transmit outgoing samples")
("rx-rate", po::value(&rx_rate), "rate of receive incoming samples")
("tx-freq", po::value(&tx_freq), "transmit RF center frequency in Hz")
("rx-freq", po::value(&rx_freq), "receive RF center frequency in Hz")
("ampl", po::value(&l)->default_value(float(0.3)), "amplitude of the waveform [0 to 0.7]")
("tx-gain", po::value(&tx_gain), "gain for the transmit RF chain")
("rx-gain", po::value(&rx_gain), "gain for the receive RF chain")
("tx-ant", po::value(&tx_ant), "transmit antenna selection")
("rx-ant", po::value(&rx_ant), "receive antenna selection")
("tx-subdev", po::value(&tx_subdev), "transmit subdevice specification")
("rx-subdev", po::value(&rx_subdev), "receive subdevice specification")
("tx-bw", po::value(&tx_bw), "analog transmit filter bandwidth in Hz")
("rx-bw", po::value(&rx_bw), "analog receive filter bandwidth in Hz")
("wave-type", po::value(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)")
("wave-freq", po::value(&wave_freq)->default_value(0), "waveform frequency in Hz")
("ref", po::value(&ref)->default_value("internal"), "clock reference (internal, external, mimo)")
("otw", po::value(&otw)->default_value("sc16"), "specify the over-the-wire sample mode")
("tx-channels", po::value(&tx_channels)->default_value("0"), "which TX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
("rx-channels", po::value(&rx_channels)->default_value("0"), "which RX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
("tx-int-n", "tune USRP TX with integer-N tuning")
("rx-int-n", "tune USRP RX with integer-N tuning")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("UHD TXRX Loopback to File %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the transmit usrp device with: %s...") % tx_args << std::endl;
uhd::usrp::multi_usrp::sptr tx_usrp = uhd::usrp::multi_usrp::make(tx_args);
std::cout << std::endl;
std::cout << boost::format("Creating the receive usrp device with: %s...") % rx_args << std::endl;
uhd::usrp::multi_usrp::sptr rx_usrp = uhd::usrp::multi_usrp::make(rx_args);
//detect which channels to use
std::vector tx_channel_strings;
std::vector tx_channel_nums;
boost::split(tx_channel_strings, tx_channels, boost::is_any_of("\"',"));
for(size_t ch = 0; ch < tx_channel_strings.size(); ch++){
size_t chan = boost::lexical_cast(tx_channel_strings[ch]);
if(chan >= tx_usrp->get_tx_num_channels()){
throw std::runtime_error("Invalid TX channel(s) specified.");
}
else tx_channel_nums.push_back(boost::lexical_cast(tx_channel_strings[ch]));
}
std::vector rx_channel_strings;
std::vector rx_channel_nums;
boost::split(rx_channel_strings, rx_channels, boost::is_any_of("\"',"));
for(size_t ch = 0; ch < rx_channel_strings.size(); ch++){
size_t chan = boost::lexical_cast(rx_channel_strings[ch]);
if(chan >= rx_usrp->get_rx_num_channels()){
throw std::runtime_error("Invalid RX channel(s) specified.");
}
else rx_channel_nums.push_back(boost::lexical_cast(rx_channel_strings[ch]));
}
//Lock mboard clocks
tx_usrp->set_clock_source(ref);
rx_usrp->set_clock_source(ref);
//always select the subdevice first, the channel mapping affects the other settings
if (vm.count("tx-subdev")) tx_usrp->set_tx_subdev_spec(tx_subdev);
if (vm.count("rx-subdev")) rx_usrp->set_rx_subdev_spec(rx_subdev);
std::cout << boost::format("Using TX Device: %s") % tx_usrp->get_pp_string() << std::endl;
std::cout << boost::format("Using RX Device: %s") % rx_usrp->get_pp_string() << std::endl;
//set the transmit sample rate
if (not vm.count("tx-rate")){
std::cerr << "Please specify the transmit sample rate with --tx-rate" << std::endl;
return ~0;
}
std::cout << boost::format("Setting TX Rate: %f Msps...") % (tx_rate/1e6) << std::endl;
tx_usrp->set_tx_rate(tx_rate);
std::cout << boost::format("Actual TX Rate: %f Msps...") % (tx_usrp->get_tx_rate()/1e6) << std::endl << std::endl;
//set the receive sample rate
if (not vm.count("rx-rate")){
std::cerr << "Please specify the sample rate with --rx-rate" << std::endl;
return ~0;
}
std::cout << boost::format("Setting RX Rate: %f Msps...") % (rx_rate/1e6) << std::endl;
rx_usrp->set_rx_rate(rx_rate);
std::cout << boost::format("Actual RX Rate: %f Msps...") % (rx_usrp->get_rx_rate()/1e6) << std::endl << std::endl;
//set the transmit center frequency
if (not vm.count("tx-freq")){
std::cerr << "Please specify the transmit center frequency with --tx-freq" << std::endl;
return ~0;
}
for(size_t ch = 0; ch < tx_channel_nums.size(); ch++) {
size_t channel = tx_channel_nums[ch];
if (tx_channel_nums.size() > 1) {
std::cout << "Configuring TX Channel " << channel << std::endl;
}
std::cout << boost::format("Setting TX Freq: %f MHz...") % (tx_freq/1e6) << std::endl;
uhd::tune_request_t tx_tune_request(tx_freq);
if(vm.count("tx-int-n")) tx_tune_request.args = uhd::device_addr_t("mode_n=integer");
tx_usrp->set_tx_freq(tx_tune_request, channel);
std::cout << boost::format("Actual TX Freq: %f MHz...") % (tx_usrp->get_tx_freq(channel)/1e6) << std::endl << std::endl;
//set the rf gain
if (vm.count("tx-gain")){
std::cout << boost::format("Setting TX Gain: %f dB...") % tx_gain << std::endl;
tx_usrp->set_tx_gain(tx_gain, channel);
std::cout << boost::format("Actual TX Gain: %f dB...") % tx_usrp->get_tx_gain(channel) << std::endl << std::endl;
}
//set the analog frontend filter bandwidth
if (vm.count("tx-bw")){
std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % tx_bw << std::endl;
tx_usrp->set_tx_bandwidth(tx_bw, channel);
std::cout << boost::format("Actual TX Bandwidth: %f MHz...") % tx_usrp->get_tx_bandwidth(channel) << std::endl << std::endl;
}
//set the antenna
if (vm.count("tx-ant")) tx_usrp->set_tx_antenna(tx_ant, channel);
}
for(size_t ch = 0; ch < rx_channel_nums.size(); ch++) {
size_t channel = rx_channel_nums[ch];
if (rx_channel_nums.size() > 1) {
std::cout << "Configuring RX Channel " << channel << std::endl;
}
//set the receive center frequency
if (not vm.count("rx-freq")){
std::cerr << "Please specify the center frequency with --rx-freq" << std::endl;
return ~0;
}
std::cout << boost::format("Setting RX Freq: %f MHz...") % (rx_freq/1e6) << std::endl;
uhd::tune_request_t rx_tune_request(rx_freq);
if(vm.count("rx-int-n")) rx_tune_request.args = uhd::device_addr_t("mode_n=integer");
rx_usrp->set_rx_freq(rx_tune_request, channel);
std::cout << boost::format("Actual RX Freq: %f MHz...") % (rx_usrp->get_rx_freq(channel)/1e6) << std::endl << std::endl;
//set the receive rf gain
if (vm.count("rx-gain")){
std::cout << boost::format("Setting RX Gain: %f dB...") % rx_gain << std::endl;
rx_usrp->set_rx_gain(rx_gain, channel);
std::cout << boost::format("Actual RX Gain: %f dB...") % rx_usrp->get_rx_gain(channel) << std::endl << std::endl;
}
//set the receive analog frontend filter bandwidth
if (vm.count("rx-bw")){
std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (rx_bw/1e6) << std::endl;
rx_usrp->set_rx_bandwidth(rx_bw, channel);
std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % (rx_usrp->get_rx_bandwidth(channel)/1e6) << std::endl << std::endl;
}
}
//set the receive antenna
if (vm.count("ant")) rx_usrp->set_rx_antenna(rx_ant);
//for the const wave, set the wave freq for small samples per period
if (wave_freq == 0 and wave_type == "CONST"){
wave_freq = tx_usrp->get_tx_rate()/2;
}
//error when the waveform is not possible to generate
if (std::abs(wave_freq) > tx_usrp->get_tx_rate()/2){
throw std::runtime_error("wave freq out of Nyquist zone");
}
if (tx_usrp->get_tx_rate()/std::abs(wave_freq) > wave_table_len/2){
throw std::runtime_error("wave freq too small for table");
}
//pre-compute the waveform values
const wave_table_class wave_table(wave_type, ampl);
const size_t step = boost::math::iround(wave_freq/tx_usrp->get_tx_rate() * wave_table_len);
size_t index = 0;
//create a transmit streamer
//linearly map channels (index0 = channel0, index1 = channel1, ...)
uhd::stream_args_t stream_args("fc32", otw);
stream_args.channels = tx_channel_nums;
uhd::tx_streamer::sptr tx_stream = tx_usrp->get_tx_stream(stream_args);
//allocate a buffer which we re-use for each channel
if (spb == 0) spb = tx_stream->get_max_num_samps()*10;
std::vector > buff(spb);
int num_channels = tx_channel_nums.size();
//setup the metadata flags
uhd::tx_metadata_t md;
md.start_of_burst = true;
md.end_of_burst = false;
md.has_time_spec = true;
md.time_spec = uhd::time_spec_t(0.1); //give us 0.1 seconds to fill the tx buffers
//Check Ref and LO Lock detect
std::vector tx_sensor_names, rx_sensor_names;
tx_sensor_names = tx_usrp->get_tx_sensor_names(0);
if (std::find(tx_sensor_names.begin(), tx_sensor_names.end(), "lo_locked") != tx_sensor_names.end()) {
uhd::sensor_value_t lo_locked = tx_usrp->get_tx_sensor("lo_locked",0);
std::cout << boost::format("Checking TX: %s ...") % lo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(lo_locked.to_bool());
}
rx_sensor_names = rx_usrp->get_rx_sensor_names(0);
if (std::find(rx_sensor_names.begin(), rx_sensor_names.end(), "lo_locked") != rx_sensor_names.end()) {
uhd::sensor_value_t lo_locked = rx_usrp->get_rx_sensor("lo_locked",0);
std::cout << boost::format("Checking RX: %s ...") % lo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(lo_locked.to_bool());
}
tx_sensor_names = tx_usrp->get_mboard_sensor_names(0);
if ((ref == "mimo") and (std::find(tx_sensor_names.begin(), tx_sensor_names.end(), "mimo_locked") != tx_sensor_names.end())) {
uhd::sensor_value_t mimo_locked = tx_usrp->get_mboard_sensor("mimo_locked",0);
std::cout << boost::format("Checking TX: %s ...") % mimo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external") and (std::find(tx_sensor_names.begin(), tx_sensor_names.end(), "ref_locked") != tx_sensor_names.end())) {
uhd::sensor_value_t ref_locked = tx_usrp->get_mboard_sensor("ref_locked",0);
std::cout << boost::format("Checking TX: %s ...") % ref_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
rx_sensor_names = rx_usrp->get_mboard_sensor_names(0);
if ((ref == "mimo") and (std::find(rx_sensor_names.begin(), rx_sensor_names.end(), "mimo_locked") != rx_sensor_names.end())) {
uhd::sensor_value_t mimo_locked = rx_usrp->get_mboard_sensor("mimo_locked",0);
std::cout << boost::format("Checking RX: %s ...") % mimo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external") and (std::find(rx_sensor_names.begin(), rx_sensor_names.end(), "ref_locked") != rx_sensor_names.end())) {
uhd::sensor_value_t ref_locked = rx_usrp->get_mboard_sensor("ref_locked",0);
std::cout << boost::format("Checking RX: %s ...") % ref_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
if (total_num_samps == 0){
std::signal(SIGINT, &sig_int_handler);
std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
}
//reset usrp time to prepare for transmit/receive
std::cout << boost::format("Setting device timestamp to 0...") << std::endl;
tx_usrp->set_time_now(uhd::time_spec_t(0.0));
//start transmit worker thread
boost::thread_group transmit_thread;
transmit_thread.create_thread(boost::bind(&transmit_worker, buff, wave_table, tx_stream, md, step, index, num_channels));
//recv to file
if (type == "double") recv_to_file >(rx_usrp, "fc64", otw, file, spb, total_num_samps, settling, rx_channel_nums);
else if (type == "float") recv_to_file >(rx_usrp, "fc32", otw, file, spb, total_num_samps, settling, rx_channel_nums);
else if (type == "short") recv_to_file >(rx_usrp, "sc16", otw, file, spb, total_num_samps, settling, rx_channel_nums);
else {
//clean up transmit worker
stop_signal_called = true;
transmit_thread.join_all();
throw std::runtime_error("Unknown type " + type);
}
//clean up transmit worker
stop_signal_called = true;
transmit_thread.join_all();
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}