// // Copyright 2010-2012,2014-2015 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; /*********************************************************************** * Signal handlers **********************************************************************/ static bool stop_signal_called = false; void sig_int_handler(int){stop_signal_called = true;} /*********************************************************************** * Utilities **********************************************************************/ //! Change to filename, e.g. from usrp_samples.dat to usrp_samples.00.dat, // but only if multiple names are to be generated. std::string generate_out_filename(const std::string &base_fn, size_t n_names, size_t this_name) { if (n_names == 1) { return base_fn; } boost::filesystem::path base_fn_fp(base_fn); base_fn_fp.replace_extension( boost::filesystem::path( str(boost::format("%02d%s") % this_name % base_fn_fp.extension().string()) ) ); return base_fn_fp.string(); } /*********************************************************************** * Waveform generators **********************************************************************/ static const size_t wave_table_len = 8192; class wave_table_class{ public: wave_table_class(const std::string &wave_type, const float ampl): _wave_table(wave_table_len) { //compute real wave table with 1.0 amplitude std::vector real_wave_table(wave_table_len); if (wave_type == "CONST"){ for (size_t i = 0; i < wave_table_len; i++) real_wave_table[i] = 1.0; } else if (wave_type == "SQUARE"){ for (size_t i = 0; i < wave_table_len; i++) real_wave_table[i] = (i < wave_table_len/2)? 0.0 : 1.0; } else if (wave_type == "RAMP"){ for (size_t i = 0; i < wave_table_len; i++) real_wave_table[i] = 2.0*i/(wave_table_len-1) - 1.0; } else if (wave_type == "SINE"){ static const double tau = 2*std::acos(-1.0); for (size_t i = 0; i < wave_table_len; i++) real_wave_table[i] = std::sin((tau*i)/wave_table_len); } else throw std::runtime_error("unknown waveform type: " + wave_type); //compute i and q pairs with 90% offset and scale to amplitude for (size_t i = 0; i < wave_table_len; i++){ const size_t q = (i+(3*wave_table_len)/4)%wave_table_len; _wave_table[i] = std::complex(ampl*real_wave_table[i], ampl*real_wave_table[q]); } } inline std::complex operator()(const size_t index) const{ return _wave_table[index % wave_table_len]; } private: std::vector > _wave_table; }; /*********************************************************************** * transmit_worker function * A function to be used as a boost::thread_group thread for transmitting **********************************************************************/ void transmit_worker( std::vector > buff, wave_table_class wave_table, uhd::tx_streamer::sptr tx_streamer, uhd::tx_metadata_t metadata, size_t step, size_t index, int num_channels ){ std::vector *> buffs(num_channels, &buff.front()); //send data until the signal handler gets called while(not stop_signal_called){ //fill the buffer with the waveform for (size_t n = 0; n < buff.size(); n++){ buff[n] = wave_table(index += step); } //send the entire contents of the buffer tx_streamer->send(buffs, buff.size(), metadata); metadata.start_of_burst = false; metadata.has_time_spec = false; } //send a mini EOB packet metadata.end_of_burst = true; tx_streamer->send("", 0, metadata); } /*********************************************************************** * recv_to_file function **********************************************************************/ template void recv_to_file( uhd::usrp::multi_usrp::sptr usrp, const std::string &cpu_format, const std::string &wire_format, const std::string &file, size_t samps_per_buff, int num_requested_samples, float settling_time, std::vector rx_channel_nums ){ int num_total_samps = 0; //create a receive streamer uhd::stream_args_t stream_args(cpu_format,wire_format); stream_args.channels = rx_channel_nums; uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); // Prepare buffers for received samples and metadata uhd::rx_metadata_t md; std::vector > buffs( rx_channel_nums.size(), std::vector< samp_type >(samps_per_buff) ); //create a vector of pointers to point to each of the channel buffers std::vector buff_ptrs; for (size_t i = 0; i < buffs.size(); i++) { buff_ptrs.push_back(&buffs[i].front()); } // Create one ofstream object per channel // (use shared_ptr because ofstream is non-copyable) std::vector > outfiles; for (size_t i = 0; i < buffs.size(); i++) { const std::string this_filename = generate_out_filename(file, buffs.size(), i); outfiles.push_back(boost::shared_ptr(new std::ofstream(this_filename.c_str(), std::ofstream::binary))); } UHD_ASSERT_THROW(outfiles.size() == buffs.size()); UHD_ASSERT_THROW(buffs.size() == rx_channel_nums.size()); bool overflow_message = true; float timeout = settling_time + 0.1; //expected settling time + padding for first recv //setup streaming uhd::stream_cmd_t stream_cmd((num_requested_samples == 0)? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS: uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE ); stream_cmd.num_samps = num_requested_samples; stream_cmd.stream_now = false; stream_cmd.time_spec = uhd::time_spec_t(settling_time); rx_stream->issue_stream_cmd(stream_cmd); while(not stop_signal_called and (num_requested_samples != num_total_samps or num_requested_samples == 0)){ size_t num_rx_samps = rx_stream->recv(buff_ptrs, samps_per_buff, md, timeout); timeout = 0.1; //small timeout for subsequent recv if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) { std::cout << boost::format("Timeout while streaming") << std::endl; break; } if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW){ if (overflow_message){ overflow_message = false; std::cerr << boost::format( "Got an overflow indication. Please consider the following:\n" " Your write medium must sustain a rate of %fMB/s.\n" " Dropped samples will not be written to the file.\n" " Please modify this example for your purposes.\n" " This message will not appear again.\n" ) % (usrp->get_rx_rate()*sizeof(samp_type)/1e6); } continue; } if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){ throw std::runtime_error(str(boost::format( "Receiver error %s" ) % md.strerror())); } num_total_samps += num_rx_samps; for (size_t i = 0; i < outfiles.size(); i++) { outfiles[i]->write((const char*) buff_ptrs[i], num_rx_samps*sizeof(samp_type)); } } // Shut down receiver stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS; rx_stream->issue_stream_cmd(stream_cmd); // Close files for (size_t i = 0; i < outfiles.size(); i++) { outfiles[i]->close(); } } /*********************************************************************** * Main function **********************************************************************/ int UHD_SAFE_MAIN(int argc, char *argv[]){ uhd::set_thread_priority_safe(); //transmit variables to be set by po std::string tx_args, wave_type, tx_ant, tx_subdev, ref, otw, tx_channels; double tx_rate, tx_freq, tx_gain, wave_freq, tx_bw; float ampl; //receive variables to be set by po std::string rx_args, file, type, rx_ant, rx_subdev, rx_channels; size_t total_num_samps, spb; double rx_rate, rx_freq, rx_gain, rx_bw; float settling; //setup the program options po::options_description desc("Allowed options"); desc.add_options() ("help", "help message") ("tx-args", po::value(&tx_args)->default_value(""), "uhd transmit device address args") ("rx-args", po::value(&rx_args)->default_value(""), "uhd receive device address args") ("file", po::value(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to") ("type", po::value(&type)->default_value("short"), "sample type in file: double, float, or short") ("nsamps", po::value(&total_num_samps)->default_value(0), "total number of samples to receive") ("settling", po::value(&settling)->default_value(float(0.2)), "settling time (seconds) before receiving") ("spb", po::value(&spb)->default_value(0), "samples per buffer, 0 for default") ("tx-rate", po::value(&tx_rate), "rate of transmit outgoing samples") ("rx-rate", po::value(&rx_rate), "rate of receive incoming samples") ("tx-freq", po::value(&tx_freq), "transmit RF center frequency in Hz") ("rx-freq", po::value(&rx_freq), "receive RF center frequency in Hz") ("ampl", po::value(&l)->default_value(float(0.3)), "amplitude of the waveform [0 to 0.7]") ("tx-gain", po::value(&tx_gain), "gain for the transmit RF chain") ("rx-gain", po::value(&rx_gain), "gain for the receive RF chain") ("tx-ant", po::value(&tx_ant), "transmit antenna selection") ("rx-ant", po::value(&rx_ant), "receive antenna selection") ("tx-subdev", po::value(&tx_subdev), "transmit subdevice specification") ("rx-subdev", po::value(&rx_subdev), "receive subdevice specification") ("tx-bw", po::value(&tx_bw), "analog transmit filter bandwidth in Hz") ("rx-bw", po::value(&rx_bw), "analog receive filter bandwidth in Hz") ("wave-type", po::value(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)") ("wave-freq", po::value(&wave_freq)->default_value(0), "waveform frequency in Hz") ("ref", po::value(&ref)->default_value("internal"), "clock reference (internal, external, mimo)") ("otw", po::value(&otw)->default_value("sc16"), "specify the over-the-wire sample mode") ("tx-channels", po::value(&tx_channels)->default_value("0"), "which TX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)") ("rx-channels", po::value(&rx_channels)->default_value("0"), "which RX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)") ("tx-int-n", "tune USRP TX with integer-N tuning") ("rx-int-n", "tune USRP RX with integer-N tuning") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //print the help message if (vm.count("help")){ std::cout << boost::format("UHD TXRX Loopback to File %s") % desc << std::endl; return ~0; } //create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the transmit usrp device with: %s...") % tx_args << std::endl; uhd::usrp::multi_usrp::sptr tx_usrp = uhd::usrp::multi_usrp::make(tx_args); std::cout << std::endl; std::cout << boost::format("Creating the receive usrp device with: %s...") % rx_args << std::endl; uhd::usrp::multi_usrp::sptr rx_usrp = uhd::usrp::multi_usrp::make(rx_args); //detect which channels to use std::vector tx_channel_strings; std::vector tx_channel_nums; boost::split(tx_channel_strings, tx_channels, boost::is_any_of("\"',")); for(size_t ch = 0; ch < tx_channel_strings.size(); ch++){ size_t chan = boost::lexical_cast(tx_channel_strings[ch]); if(chan >= tx_usrp->get_tx_num_channels()){ throw std::runtime_error("Invalid TX channel(s) specified."); } else tx_channel_nums.push_back(boost::lexical_cast(tx_channel_strings[ch])); } std::vector rx_channel_strings; std::vector rx_channel_nums; boost::split(rx_channel_strings, rx_channels, boost::is_any_of("\"',")); for(size_t ch = 0; ch < rx_channel_strings.size(); ch++){ size_t chan = boost::lexical_cast(rx_channel_strings[ch]); if(chan >= rx_usrp->get_rx_num_channels()){ throw std::runtime_error("Invalid RX channel(s) specified."); } else rx_channel_nums.push_back(boost::lexical_cast(rx_channel_strings[ch])); } //Lock mboard clocks tx_usrp->set_clock_source(ref); rx_usrp->set_clock_source(ref); //always select the subdevice first, the channel mapping affects the other settings if (vm.count("tx-subdev")) tx_usrp->set_tx_subdev_spec(tx_subdev); if (vm.count("rx-subdev")) rx_usrp->set_rx_subdev_spec(rx_subdev); std::cout << boost::format("Using TX Device: %s") % tx_usrp->get_pp_string() << std::endl; std::cout << boost::format("Using RX Device: %s") % rx_usrp->get_pp_string() << std::endl; //set the transmit sample rate if (not vm.count("tx-rate")){ std::cerr << "Please specify the transmit sample rate with --tx-rate" << std::endl; return ~0; } std::cout << boost::format("Setting TX Rate: %f Msps...") % (tx_rate/1e6) << std::endl; tx_usrp->set_tx_rate(tx_rate); std::cout << boost::format("Actual TX Rate: %f Msps...") % (tx_usrp->get_tx_rate()/1e6) << std::endl << std::endl; //set the receive sample rate if (not vm.count("rx-rate")){ std::cerr << "Please specify the sample rate with --rx-rate" << std::endl; return ~0; } std::cout << boost::format("Setting RX Rate: %f Msps...") % (rx_rate/1e6) << std::endl; rx_usrp->set_rx_rate(rx_rate); std::cout << boost::format("Actual RX Rate: %f Msps...") % (rx_usrp->get_rx_rate()/1e6) << std::endl << std::endl; //set the transmit center frequency if (not vm.count("tx-freq")){ std::cerr << "Please specify the transmit center frequency with --tx-freq" << std::endl; return ~0; } for(size_t ch = 0; ch < tx_channel_nums.size(); ch++) { size_t channel = tx_channel_nums[ch]; if (tx_channel_nums.size() > 1) { std::cout << "Configuring TX Channel " << channel << std::endl; } std::cout << boost::format("Setting TX Freq: %f MHz...") % (tx_freq/1e6) << std::endl; uhd::tune_request_t tx_tune_request(tx_freq); if(vm.count("tx-int-n")) tx_tune_request.args = uhd::device_addr_t("mode_n=integer"); tx_usrp->set_tx_freq(tx_tune_request, channel); std::cout << boost::format("Actual TX Freq: %f MHz...") % (tx_usrp->get_tx_freq(channel)/1e6) << std::endl << std::endl; //set the rf gain if (vm.count("tx-gain")){ std::cout << boost::format("Setting TX Gain: %f dB...") % tx_gain << std::endl; tx_usrp->set_tx_gain(tx_gain, channel); std::cout << boost::format("Actual TX Gain: %f dB...") % tx_usrp->get_tx_gain(channel) << std::endl << std::endl; } //set the analog frontend filter bandwidth if (vm.count("tx-bw")){ std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % tx_bw << std::endl; tx_usrp->set_tx_bandwidth(tx_bw, channel); std::cout << boost::format("Actual TX Bandwidth: %f MHz...") % tx_usrp->get_tx_bandwidth(channel) << std::endl << std::endl; } //set the antenna if (vm.count("tx-ant")) tx_usrp->set_tx_antenna(tx_ant, channel); } for(size_t ch = 0; ch < rx_channel_nums.size(); ch++) { size_t channel = rx_channel_nums[ch]; if (rx_channel_nums.size() > 1) { std::cout << "Configuring RX Channel " << channel << std::endl; } //set the receive center frequency if (not vm.count("rx-freq")){ std::cerr << "Please specify the center frequency with --rx-freq" << std::endl; return ~0; } std::cout << boost::format("Setting RX Freq: %f MHz...") % (rx_freq/1e6) << std::endl; uhd::tune_request_t rx_tune_request(rx_freq); if(vm.count("rx-int-n")) rx_tune_request.args = uhd::device_addr_t("mode_n=integer"); rx_usrp->set_rx_freq(rx_tune_request, channel); std::cout << boost::format("Actual RX Freq: %f MHz...") % (rx_usrp->get_rx_freq(channel)/1e6) << std::endl << std::endl; //set the receive rf gain if (vm.count("rx-gain")){ std::cout << boost::format("Setting RX Gain: %f dB...") % rx_gain << std::endl; rx_usrp->set_rx_gain(rx_gain, channel); std::cout << boost::format("Actual RX Gain: %f dB...") % rx_usrp->get_rx_gain(channel) << std::endl << std::endl; } //set the receive analog frontend filter bandwidth if (vm.count("rx-bw")){ std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (rx_bw/1e6) << std::endl; rx_usrp->set_rx_bandwidth(rx_bw, channel); std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % (rx_usrp->get_rx_bandwidth(channel)/1e6) << std::endl << std::endl; } } //set the receive antenna if (vm.count("ant")) rx_usrp->set_rx_antenna(rx_ant); //for the const wave, set the wave freq for small samples per period if (wave_freq == 0 and wave_type == "CONST"){ wave_freq = tx_usrp->get_tx_rate()/2; } //error when the waveform is not possible to generate if (std::abs(wave_freq) > tx_usrp->get_tx_rate()/2){ throw std::runtime_error("wave freq out of Nyquist zone"); } if (tx_usrp->get_tx_rate()/std::abs(wave_freq) > wave_table_len/2){ throw std::runtime_error("wave freq too small for table"); } //pre-compute the waveform values const wave_table_class wave_table(wave_type, ampl); const size_t step = boost::math::iround(wave_freq/tx_usrp->get_tx_rate() * wave_table_len); size_t index = 0; //create a transmit streamer //linearly map channels (index0 = channel0, index1 = channel1, ...) uhd::stream_args_t stream_args("fc32", otw); stream_args.channels = tx_channel_nums; uhd::tx_streamer::sptr tx_stream = tx_usrp->get_tx_stream(stream_args); //allocate a buffer which we re-use for each channel if (spb == 0) spb = tx_stream->get_max_num_samps()*10; std::vector > buff(spb); int num_channels = tx_channel_nums.size(); //setup the metadata flags uhd::tx_metadata_t md; md.start_of_burst = true; md.end_of_burst = false; md.has_time_spec = true; md.time_spec = uhd::time_spec_t(0.1); //give us 0.1 seconds to fill the tx buffers //Check Ref and LO Lock detect std::vector tx_sensor_names, rx_sensor_names; tx_sensor_names = tx_usrp->get_tx_sensor_names(0); if (std::find(tx_sensor_names.begin(), tx_sensor_names.end(), "lo_locked") != tx_sensor_names.end()) { uhd::sensor_value_t lo_locked = tx_usrp->get_tx_sensor("lo_locked",0); std::cout << boost::format("Checking TX: %s ...") % lo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(lo_locked.to_bool()); } rx_sensor_names = rx_usrp->get_rx_sensor_names(0); if (std::find(rx_sensor_names.begin(), rx_sensor_names.end(), "lo_locked") != rx_sensor_names.end()) { uhd::sensor_value_t lo_locked = rx_usrp->get_rx_sensor("lo_locked",0); std::cout << boost::format("Checking RX: %s ...") % lo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(lo_locked.to_bool()); } tx_sensor_names = tx_usrp->get_mboard_sensor_names(0); if ((ref == "mimo") and (std::find(tx_sensor_names.begin(), tx_sensor_names.end(), "mimo_locked") != tx_sensor_names.end())) { uhd::sensor_value_t mimo_locked = tx_usrp->get_mboard_sensor("mimo_locked",0); std::cout << boost::format("Checking TX: %s ...") % mimo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(mimo_locked.to_bool()); } if ((ref == "external") and (std::find(tx_sensor_names.begin(), tx_sensor_names.end(), "ref_locked") != tx_sensor_names.end())) { uhd::sensor_value_t ref_locked = tx_usrp->get_mboard_sensor("ref_locked",0); std::cout << boost::format("Checking TX: %s ...") % ref_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(ref_locked.to_bool()); } rx_sensor_names = rx_usrp->get_mboard_sensor_names(0); if ((ref == "mimo") and (std::find(rx_sensor_names.begin(), rx_sensor_names.end(), "mimo_locked") != rx_sensor_names.end())) { uhd::sensor_value_t mimo_locked = rx_usrp->get_mboard_sensor("mimo_locked",0); std::cout << boost::format("Checking RX: %s ...") % mimo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(mimo_locked.to_bool()); } if ((ref == "external") and (std::find(rx_sensor_names.begin(), rx_sensor_names.end(), "ref_locked") != rx_sensor_names.end())) { uhd::sensor_value_t ref_locked = rx_usrp->get_mboard_sensor("ref_locked",0); std::cout << boost::format("Checking RX: %s ...") % ref_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(ref_locked.to_bool()); } if (total_num_samps == 0){ std::signal(SIGINT, &sig_int_handler); std::cout << "Press Ctrl + C to stop streaming..." << std::endl; } //reset usrp time to prepare for transmit/receive std::cout << boost::format("Setting device timestamp to 0...") << std::endl; tx_usrp->set_time_now(uhd::time_spec_t(0.0)); //start transmit worker thread boost::thread_group transmit_thread; transmit_thread.create_thread(boost::bind(&transmit_worker, buff, wave_table, tx_stream, md, step, index, num_channels)); //recv to file if (type == "double") recv_to_file >(rx_usrp, "fc64", otw, file, spb, total_num_samps, settling, rx_channel_nums); else if (type == "float") recv_to_file >(rx_usrp, "fc32", otw, file, spb, total_num_samps, settling, rx_channel_nums); else if (type == "short") recv_to_file >(rx_usrp, "sc16", otw, file, spb, total_num_samps, settling, rx_channel_nums); else { //clean up transmit worker stop_signal_called = true; transmit_thread.join_all(); throw std::runtime_error("Unknown type " + type); } //clean up transmit worker stop_signal_called = true; transmit_thread.join_all(); //finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }