//
// Copyright 2010-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace po = boost::program_options;
/***********************************************************************
* Signal handlers
**********************************************************************/
static bool stop_signal_called = false;
void sig_int_handler(int){stop_signal_called = true;}
/***********************************************************************
* Waveform generators
**********************************************************************/
static const size_t wave_table_len = 8192;
class wave_table_class{
public:
wave_table_class(const std::string &wave_type, const float ampl):
_wave_table(wave_table_len)
{
//compute real wave table with 1.0 amplitude
std::vector real_wave_table(wave_table_len);
if (wave_type == "CONST"){
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = 1.0;
}
else if (wave_type == "SQUARE"){
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = (i < wave_table_len/2)? 0.0 : 1.0;
}
else if (wave_type == "RAMP"){
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = 2.0*i/(wave_table_len-1) - 1.0;
}
else if (wave_type == "SINE"){
static const double tau = 2*std::acos(-1.0);
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = std::sin((tau*i)/wave_table_len);
}
else throw std::runtime_error("unknown waveform type: " + wave_type);
//compute i and q pairs with 90% offset and scale to amplitude
for (size_t i = 0; i < wave_table_len; i++){
const size_t q = (i+(3*wave_table_len)/4)%wave_table_len;
_wave_table[i] = std::complex(ampl*real_wave_table[i], ampl*real_wave_table[q]);
}
}
inline std::complex operator()(const double theta) const{
return _wave_table[unsigned(boost::math::iround(theta*wave_table_len))%wave_table_len];
}
private:
std::vector > _wave_table;
};
/***********************************************************************
* Main function
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args, wave_type, ant, subdev;
size_t spb;
double rate, freq, gain, wave_freq, bw;
float ampl;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value(&args)->default_value(""), "single uhd device address args")
("spb", po::value(&spb)->default_value(10000), "samples per buffer")
("rate", po::value(&rate), "rate of outgoing samples")
("freq", po::value(&freq), "RF center frequency in Hz")
("ampl", po::value(&l)->default_value(float(0.3)), "amplitude of the waveform")
("gain", po::value(&gain), "gain for the RF chain")
("ant", po::value(&ant), "daughterboard antenna selection")
("subdev", po::value(&subdev), "daughterboard subdevice specification")
("bw", po::value(&bw), "daughterboard IF filter bandwidth in Hz")
("wave-type", po::value(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)")
("wave-freq", po::value(&wave_freq)->default_value(0), "waveform frequency in Hz")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
//always select the subdevice first, the channel mapping affects the other settings
if (vm.count("subdev")) usrp->set_tx_subdev_spec(subdev);
std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
//set the sample rate
if (not vm.count("rate")){
std::cerr << "Please specify the sample rate with --rate" << std::endl;
return ~0;
}
std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate/1e6) << std::endl;
usrp->set_tx_rate(rate);
std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate()/1e6) << std::endl << std::endl;
//set the center frequency
if (not vm.count("freq")){
std::cerr << "Please specify the center frequency with --freq" << std::endl;
return ~0;
}
for(size_t chan = 0; chan < usrp->get_tx_num_channels(); chan++) {
std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq/1e6) << std::endl;
usrp->set_tx_freq(freq, chan);
std::cout << boost::format("Actual TX Freq: %f MHz...") % (usrp->get_tx_freq(chan)/1e6) << std::endl << std::endl;
//set the rf gain
if (vm.count("gain")){
std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl;
usrp->set_tx_gain(gain, chan);
std::cout << boost::format("Actual TX Gain: %f dB...") % usrp->get_tx_gain(chan) << std::endl << std::endl;
}
//set the IF filter bandwidth
if (vm.count("bw")){
std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % bw << std::endl;
usrp->set_tx_bandwidth(bw, chan);
std::cout << boost::format("Actual TX Bandwidth: %f MHz...") % usrp->get_tx_bandwidth(chan) << std::endl << std::endl;
}
//set the antenna
if (vm.count("ant")) usrp->set_tx_antenna(ant, chan);
}
//for the const wave, set the wave freq for small samples per period
if (wave_freq == 0 and wave_type == "CONST"){
wave_freq = usrp->get_tx_rate()/2;
}
//error when the waveform is not possible to generate
if (std::abs(wave_freq) > usrp->get_tx_rate()/2){
throw std::runtime_error("wave freq out of Nyquist zone");
}
if (usrp->get_tx_rate()/std::abs(wave_freq) > wave_table_len/2){
throw std::runtime_error("wave freq too small for table");
}
//pre-compute the waveform values
const wave_table_class wave_table(wave_type, ampl);
const double cps = wave_freq/usrp->get_tx_rate();
double theta = 0;
//allocate a buffer which we re-use for each channel
std::vector > buff(spb);
std::vector *> buffs(usrp->get_tx_num_channels(), &buff.front());
//setup the metadata flags
uhd::tx_metadata_t md;
md.start_of_burst = true;
md.end_of_burst = false;
md.has_time_spec = true;
md.time_spec = uhd::time_spec_t(0.1);
std::cout << boost::format("Setting device timestamp to 0...") << std::endl;
usrp->set_time_now(uhd::time_spec_t(0.0));
std::signal(SIGINT, &sig_int_handler);
std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
//send data until the signal handler gets called
while(not stop_signal_called){
//fill the buffer with the waveform
for (size_t n = 0; n < buff.size(); n++){
buff[n] = wave_table(theta += cps);
}
//bring the theta back into range [0, 1)
theta = std::fmod(theta, 1);
//send the entire contents of the buffer
usrp->get_device()->send(
buffs, buff.size(), md,
uhd::io_type_t::COMPLEX_FLOAT32,
uhd::device::SEND_MODE_FULL_BUFF
);
md.start_of_burst = false;
md.has_time_spec = false;
}
//send a mini EOB packet
md.end_of_burst = true;
usrp->get_device()->send("", 0, md,
uhd::io_type_t::COMPLEX_FLOAT32,
uhd::device::SEND_MODE_FULL_BUFF
);
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return 0;
}