//
// Copyright 2010-2012,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "wavetable.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace po = boost::program_options;
/***********************************************************************
* Signal handlers
**********************************************************************/
static bool stop_signal_called = false;
void sig_int_handler(int){stop_signal_called = true;}
/***********************************************************************
* Main function
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args, wave_type, ant, subdev, ref, pps, otw, channel_list;
uint64_t total_num_samps, spb;
double rate, freq, gain, wave_freq, bw;
float ampl;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value(&args)->default_value(""), "single uhd device address args")
("spb", po::value(&spb)->default_value(0), "samples per buffer, 0 for default")
("nsamps", po::value(&total_num_samps)->default_value(0), "total number of samples to transmit")
("rate", po::value(&rate), "rate of outgoing samples")
("freq", po::value(&freq), "RF center frequency in Hz")
("ampl", po::value(&l)->default_value(float(0.3)), "amplitude of the waveform [0 to 0.7]")
("gain", po::value(&gain), "gain for the RF chain")
("ant", po::value(&ant), "antenna selection")
("subdev", po::value(&subdev), "subdevice specification")
("bw", po::value(&bw), "analog frontend filter bandwidth in Hz")
("wave-type", po::value(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)")
("wave-freq", po::value(&wave_freq)->default_value(0), "waveform frequency in Hz")
("ref", po::value(&ref)->default_value("internal"), "clock reference (internal, external, mimo, gpsdo)")
("pps", po::value(&pps), "PPS source (internal, external, mimo, gpsdo)")
("otw", po::value(&otw)->default_value("sc16"), "specify the over-the-wire sample mode")
("channels", po::value(&channel_list)->default_value("0"), "which channels to use (specify \"0\", \"1\", \"0,1\", etc)")
("int-n", "tune USRP with integer-N tuning")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
//detect which channels to use
std::vector channel_strings;
std::vector channel_nums;
boost::split(channel_strings, channel_list, boost::is_any_of("\"',"));
for(size_t ch = 0; ch < channel_strings.size(); ch++){
size_t chan = boost::lexical_cast(channel_strings[ch]);
if(chan >= usrp->get_tx_num_channels())
throw std::runtime_error("Invalid channel(s) specified.");
else
channel_nums.push_back(boost::lexical_cast(channel_strings[ch]));
}
//Lock mboard clocks
usrp->set_clock_source(ref);
//always select the subdevice first, the channel mapping affects the other settings
if (vm.count("subdev")) usrp->set_tx_subdev_spec(subdev);
std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
//set the sample rate
if (not vm.count("rate")){
std::cerr << "Please specify the sample rate with --rate" << std::endl;
return ~0;
}
std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate/1e6) << std::endl;
usrp->set_tx_rate(rate);
std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate()/1e6) << std::endl << std::endl;
//set the center frequency
if (not vm.count("freq")){
std::cerr << "Please specify the center frequency with --freq" << std::endl;
return ~0;
}
for(size_t ch = 0; ch < channel_nums.size(); ch++) {
std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq/1e6) << std::endl;
uhd::tune_request_t tune_request(freq);
if(vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer");
usrp->set_tx_freq(tune_request, channel_nums[ch]);
std::cout << boost::format("Actual TX Freq: %f MHz...") % (usrp->get_tx_freq(channel_nums[ch])/1e6) << std::endl << std::endl;
//set the rf gain
if (vm.count("gain")){
std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl;
usrp->set_tx_gain(gain, channel_nums[ch]);
std::cout << boost::format("Actual TX Gain: %f dB...") % usrp->get_tx_gain(channel_nums[ch]) << std::endl << std::endl;
}
//set the analog frontend filter bandwidth
if (vm.count("bw")){
std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % bw << std::endl;
usrp->set_tx_bandwidth(bw, channel_nums[ch]);
std::cout << boost::format("Actual TX Bandwidth: %f MHz...") % usrp->get_tx_bandwidth(channel_nums[ch]) << std::endl << std::endl;
}
//set the antenna
if (vm.count("ant")) usrp->set_tx_antenna(ant, channel_nums[ch]);
}
boost::this_thread::sleep(boost::posix_time::seconds(1)); //allow for some setup time
//for the const wave, set the wave freq for small samples per period
if (wave_freq == 0 and wave_type == "CONST"){
wave_freq = usrp->get_tx_rate()/2;
}
//error when the waveform is not possible to generate
if (std::abs(wave_freq) > usrp->get_tx_rate()/2){
throw std::runtime_error("wave freq out of Nyquist zone");
}
if (usrp->get_tx_rate()/std::abs(wave_freq) > wave_table_len/2){
throw std::runtime_error("wave freq too small for table");
}
//pre-compute the waveform values
const wave_table_class wave_table(wave_type, ampl);
const size_t step = boost::math::iround(wave_freq/usrp->get_tx_rate() * wave_table_len);
size_t index = 0;
//create a transmit streamer
//linearly map channels (index0 = channel0, index1 = channel1, ...)
uhd::stream_args_t stream_args("fc32", otw);
stream_args.channels = channel_nums;
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
//allocate a buffer which we re-use for each channel
if (spb == 0) spb = tx_stream->get_max_num_samps()*10;
std::vector > buff(spb);
std::vector *> buffs(channel_nums.size(), &buff.front());
std::cout << boost::format("Setting device timestamp to 0...") << std::endl;
if (channel_nums.size() > 1)
{
// Sync times
if (pps == "mimo")
{
UHD_ASSERT_THROW(usrp->get_num_mboards() == 2);
//make mboard 1 a slave over the MIMO Cable
usrp->set_time_source("mimo", 1);
//set time on the master (mboard 0)
usrp->set_time_now(uhd::time_spec_t(0.0), 0);
//sleep a bit while the slave locks its time to the master
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
}
else
{
if (pps == "internal" or pps == "external" or pps == "gpsdo")
usrp->set_time_source(pps);
usrp->set_time_unknown_pps(uhd::time_spec_t(0.0));
boost::this_thread::sleep(boost::posix_time::seconds(1)); //wait for pps sync pulse
}
}
else
{
usrp->set_time_now(0.0);
}
//Check Ref and LO Lock detect
std::vector sensor_names;
sensor_names = usrp->get_tx_sensor_names(0);
if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end()) {
uhd::sensor_value_t lo_locked = usrp->get_tx_sensor("lo_locked",0);
std::cout << boost::format("Checking TX: %s ...") % lo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(lo_locked.to_bool());
}
sensor_names = usrp->get_mboard_sensor_names(0);
if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) {
uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked",0);
std::cout << boost::format("Checking TX: %s ...") % mimo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) {
uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked",0);
std::cout << boost::format("Checking TX: %s ...") % ref_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
std::signal(SIGINT, &sig_int_handler);
std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
// Set up metadata. We start streaming a bit in the future
// to allow MIMO operation:
uhd::tx_metadata_t md;
md.start_of_burst = true;
md.end_of_burst = false;
md.has_time_spec = true;
md.time_spec = usrp->get_time_now() + uhd::time_spec_t(0.1);
//send data until the signal handler gets called
//or if we accumulate the number of samples specified (unless it's 0)
uint64_t num_acc_samps = 0;
while(true){
if (stop_signal_called) break;
if (total_num_samps > 0 and num_acc_samps >= total_num_samps) break;
//fill the buffer with the waveform
for (size_t n = 0; n < buff.size(); n++){
buff[n] = wave_table(index += step);
}
//send the entire contents of the buffer
num_acc_samps += tx_stream->send(
buffs, buff.size(), md
);
md.start_of_burst = false;
md.has_time_spec = false;
}
//send a mini EOB packet
md.end_of_burst = true;
tx_stream->send("", 0, md);
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}