// // Copyright 2010-2012,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "wavetable.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; /*********************************************************************** * Signal handlers **********************************************************************/ static bool stop_signal_called = false; void sig_int_handler(int) { stop_signal_called = true; } /*********************************************************************** * Main function **********************************************************************/ int UHD_SAFE_MAIN(int argc, char* argv[]) { uhd::set_thread_priority_safe(); // variables to be set by po std::string args, wave_type, ant, subdev, ref, pps, otw, channel_list; uint64_t total_num_samps; size_t spb; double rate, freq, gain, wave_freq, bw, lo_offset; float ampl; // setup the program options po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "single uhd device address args") ("spb", po::value(&spb)->default_value(0), "samples per buffer, 0 for default") ("nsamps", po::value(&total_num_samps)->default_value(0), "total number of samples to transmit") ("rate", po::value(&rate), "rate of outgoing samples") ("freq", po::value(&freq), "RF center frequency in Hz") ("lo-offset", po::value(&lo_offset)->default_value(0.0), "Offset for frontend LO in Hz (optional)") ("ampl", po::value(&l)->default_value(float(0.3)), "amplitude of the waveform [0 to 0.7]") ("gain", po::value(&gain), "gain for the RF chain") ("ant", po::value(&ant), "antenna selection") ("subdev", po::value(&subdev), "subdevice specification") ("bw", po::value(&bw), "analog frontend filter bandwidth in Hz") ("wave-type", po::value(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)") ("wave-freq", po::value(&wave_freq)->default_value(0), "waveform frequency in Hz") ("ref", po::value(&ref)->default_value("internal"), "clock reference (internal, external, mimo, gpsdo)") ("pps", po::value(&pps), "PPS source (internal, external, mimo, gpsdo)") ("otw", po::value(&otw)->default_value("sc16"), "specify the over-the-wire sample mode") ("channels", po::value(&channel_list)->default_value("0"), "which channels to use (specify \"0\", \"1\", \"0,1\", etc)") ("int-n", "tune USRP with integer-N tuning") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl; return ~0; } // create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); // always select the subdevice first, the channel mapping affects the other settings if (vm.count("subdev")) usrp->set_tx_subdev_spec(subdev); // detect which channels to use std::vector channel_strings; std::vector channel_nums; boost::split(channel_strings, channel_list, boost::is_any_of("\"',")); for (size_t ch = 0; ch < channel_strings.size(); ch++) { size_t chan = std::stoi(channel_strings[ch]); if (chan >= usrp->get_tx_num_channels()) throw std::runtime_error("Invalid channel(s) specified."); else channel_nums.push_back(std::stoi(channel_strings[ch])); } // Lock mboard clocks usrp->set_clock_source(ref); std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; // set the sample rate if (not vm.count("rate")) { std::cerr << "Please specify the sample rate with --rate" << std::endl; return ~0; } std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate / 1e6) << std::endl; usrp->set_tx_rate(rate); std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate() / 1e6) << std::endl << std::endl; // set the center frequency if (not vm.count("freq")) { std::cerr << "Please specify the center frequency with --freq" << std::endl; return ~0; } for (size_t ch = 0; ch < channel_nums.size(); ch++) { std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq / 1e6) << std::endl; std::cout << boost::format("Setting TX LO Offset: %f MHz...") % (lo_offset / 1e6) << std::endl; uhd::tune_request_t tune_request(freq, lo_offset); if (vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer"); usrp->set_tx_freq(tune_request, channel_nums[ch]); std::cout << boost::format("Actual TX Freq: %f MHz...") % (usrp->get_tx_freq(channel_nums[ch]) / 1e6) << std::endl << std::endl; // set the rf gain if (vm.count("gain")) { std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl; usrp->set_tx_gain(gain, channel_nums[ch]); std::cout << boost::format("Actual TX Gain: %f dB...") % usrp->get_tx_gain(channel_nums[ch]) << std::endl << std::endl; } // set the analog frontend filter bandwidth if (vm.count("bw")) { std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % bw << std::endl; usrp->set_tx_bandwidth(bw, channel_nums[ch]); std::cout << boost::format("Actual TX Bandwidth: %f MHz...") % usrp->get_tx_bandwidth(channel_nums[ch]) << std::endl << std::endl; } // set the antenna if (vm.count("ant")) usrp->set_tx_antenna(ant, channel_nums[ch]); } std::this_thread::sleep_for(std::chrono::seconds(1)); // allow for some setup time // for the const wave, set the wave freq for small samples per period if (wave_freq == 0) { if (wave_type == "CONST") { wave_freq = usrp->get_tx_rate() / 2; } else { throw std::runtime_error( "wave freq cannot be 0 with wave type other than CONST"); } } // error when the waveform is not possible to generate if (std::abs(wave_freq) > usrp->get_tx_rate() / 2) { throw std::runtime_error("wave freq out of Nyquist zone"); } if (usrp->get_tx_rate() / std::abs(wave_freq) > wave_table_len / 2) { throw std::runtime_error("wave freq too small for table"); } // pre-compute the waveform values const wave_table_class wave_table(wave_type, ampl); const size_t step = boost::math::iround(wave_freq / usrp->get_tx_rate() * wave_table_len); size_t index = 0; // create a transmit streamer // linearly map channels (index0 = channel0, index1 = channel1, ...) uhd::stream_args_t stream_args("fc32", otw); stream_args.channels = channel_nums; uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); // allocate a buffer which we re-use for each channel if (spb == 0) { spb = tx_stream->get_max_num_samps() * 10; } std::vector> buff(spb); std::vector*> buffs(channel_nums.size(), &buff.front()); // pre-fill the buffer with the waveform for (size_t n = 0; n < buff.size(); n++) { buff[n] = wave_table(index += step); } std::cout << boost::format("Setting device timestamp to 0...") << std::endl; if (channel_nums.size() > 1) { // Sync times if (pps == "mimo") { UHD_ASSERT_THROW(usrp->get_num_mboards() == 2); // make mboard 1 a slave over the MIMO Cable usrp->set_time_source("mimo", 1); // set time on the master (mboard 0) usrp->set_time_now(uhd::time_spec_t(0.0), 0); // sleep a bit while the slave locks its time to the master std::this_thread::sleep_for(std::chrono::milliseconds(100)); } else { if (pps == "internal" or pps == "external" or pps == "gpsdo") usrp->set_time_source(pps); usrp->set_time_unknown_pps(uhd::time_spec_t(0.0)); std::this_thread::sleep_for( std::chrono::seconds(1)); // wait for pps sync pulse } } else { usrp->set_time_now(0.0); } // Check Ref and LO Lock detect std::vector sensor_names; const size_t tx_sensor_chan = channel_nums.empty() ? 0 : channel_nums[0]; sensor_names = usrp->get_tx_sensor_names(tx_sensor_chan); if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end()) { uhd::sensor_value_t lo_locked = usrp->get_tx_sensor("lo_locked", tx_sensor_chan); std::cout << boost::format("Checking TX: %s ...") % lo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(lo_locked.to_bool()); } const size_t mboard_sensor_idx = 0; sensor_names = usrp->get_mboard_sensor_names(mboard_sensor_idx); if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) { uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked", mboard_sensor_idx); std::cout << boost::format("Checking TX: %s ...") % mimo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(mimo_locked.to_bool()); } if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) { uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked", mboard_sensor_idx); std::cout << boost::format("Checking TX: %s ...") % ref_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(ref_locked.to_bool()); } std::signal(SIGINT, &sig_int_handler); std::cout << "Press Ctrl + C to stop streaming..." << std::endl; // Set up metadata. We start streaming a bit in the future // to allow MIMO operation: uhd::tx_metadata_t md; md.start_of_burst = true; md.end_of_burst = false; md.has_time_spec = true; md.time_spec = usrp->get_time_now() + uhd::time_spec_t(0.1); // send data until the signal handler gets called // or if we accumulate the number of samples specified (unless it's 0) uint64_t num_acc_samps = 0; while (true) { // Break on the end of duration or CTRL-C if (stop_signal_called) { break; } // Break when we've received nsamps if (total_num_samps > 0 and num_acc_samps >= total_num_samps) { break; } // send the entire contents of the buffer num_acc_samps += tx_stream->send(buffs, buff.size(), md); // fill the buffer with the waveform for (size_t n = 0; n < buff.size(); n++) { buff[n] = wave_table(index += step); } md.start_of_burst = false; md.has_time_spec = false; } // send a mini EOB packet md.end_of_burst = true; tx_stream->send("", 0, md); // finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }