// // Copyright 2010-2011,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include namespace po = boost::program_options; int UHD_SAFE_MAIN(int argc, char* argv[]) { // variables to be set by po std::string args; std::string wire; double seconds_in_future; size_t total_num_samps; double rate; float ampl; // setup the program options po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "single uhd device address args") ("wire", po::value(&wire)->default_value(""), "the over the wire type, sc16, sc8, etc") ("secs", po::value(&seconds_in_future)->default_value(1.5), "number of seconds in the future to transmit") ("nsamps", po::value(&total_num_samps)->default_value(10000), "total number of samples to transmit") ("rate", po::value(&rate)->default_value(100e6/16), "rate of outgoing samples") ("ampl", po::value(&l)->default_value(float(0.3)), "amplitude of each sample") ("dilv", "specify to disable inner-loop verbose") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << boost::format("UHD TX Timed Samples %s") % desc << std::endl; return ~0; } bool verbose = vm.count("dilv") == 0; // create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; // set the tx sample rate std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate / 1e6) << std::endl; usrp->set_tx_rate(rate); std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate() / 1e6) << std::endl << std::endl; std::cout << boost::format("Setting device timestamp to 0...") << std::endl; usrp->set_time_now(uhd::time_spec_t(0.0)); // create a transmit streamer uhd::stream_args_t stream_args("fc32", wire); // complex floats uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); // allocate buffer with data to send std::vector> buff( tx_stream->get_max_num_samps(), std::complex(ampl, ampl)); // setup metadata for the first packet uhd::tx_metadata_t md; md.start_of_burst = false; md.end_of_burst = false; md.has_time_spec = true; md.time_spec = uhd::time_spec_t(seconds_in_future); // the first call to send() will block this many seconds before sending: const double timeout = seconds_in_future + 0.1; // timeout (delay before transmit + padding) size_t num_acc_samps = 0; // number of accumulated samples while (num_acc_samps < total_num_samps) { size_t samps_to_send = std::min(total_num_samps - num_acc_samps, buff.size()); // send a single packet size_t num_tx_samps = tx_stream->send(&buff.front(), samps_to_send, md, timeout); // do not use time spec for subsequent packets md.has_time_spec = false; if (num_tx_samps < samps_to_send) std::cerr << "Send timeout..." << std::endl; if (verbose) std::cout << boost::format("Sent packet: %u samples") % num_tx_samps << std::endl; num_acc_samps += num_tx_samps; } // send a mini EOB packet md.end_of_burst = true; tx_stream->send("", 0, md); std::cout << std::endl << "Waiting for async burst ACK... " << std::flush; uhd::async_metadata_t async_md; bool got_async_burst_ack = false; // loop through all messages for the ACK packet (may have underflow messages in queue) while (not got_async_burst_ack and tx_stream->recv_async_msg(async_md, timeout)) { got_async_burst_ack = (async_md.event_code == uhd::async_metadata_t::EVENT_CODE_BURST_ACK); } std::cout << (got_async_burst_ack ? "success" : "fail") << std::endl; // finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }