// // Copyright 2010-2011,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; static bool stop_signal_called = false; void sig_int_handler(int) { stop_signal_called = true; } int UHD_SAFE_MAIN(int argc, char* argv[]) { uhd::set_thread_priority_safe(); // variables to be set by po std::string args, channel_list; double seconds_in_future; size_t total_num_samps; double rate; float ampl; double freq; double rep_rate; double gain; // setup the program options po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "multi uhd device address args") ("secs", po::value(&seconds_in_future)->default_value(1.5), "delay before first burst") ("repeat", "repeat burst") ("rep-delay", po::value(&rep_rate)->default_value(0.5), "delay between bursts") ("nsamps", po::value(&total_num_samps)->default_value(10000), "total number of samples to transmit") ("rate", po::value(&rate)->default_value(100e6/16), "rate of outgoing samples") ("ampl", po::value(&l)->default_value(float(0.3)), "amplitude of each sample") ("freq", po::value(&freq)->default_value(0), "center frequency") ("gain", po::value(&gain)->default_value(0), "gain") ("dilv", "specify to disable inner-loop verbose") ("channels", po::value(&channel_list)->default_value("0"), "which channel(s) to use (specify \"0\", \"1\", \"0,1\", etc") ("int-n", "tune USRP with integer-n tuning") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << boost::format("UHD TX Timed Samples %s") % desc << std::endl; return ~0; } bool verbose = vm.count("dilv") == 0; bool repeat = vm.count("repeat") != 0; // create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; // detect which channels to use std::vector channel_strings; std::vector channel_nums; boost::split(channel_strings, channel_list, boost::is_any_of("\"',")); for (size_t ch = 0; ch < channel_strings.size(); ch++) { size_t chan = std::stoi(channel_strings[ch]); if (chan >= usrp->get_tx_num_channels()) { throw std::runtime_error("Invalid channel(s) specified."); } else channel_nums.push_back(std::stoi(channel_strings[ch])); } // set the tx sample rate std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate / 1e6) << std::endl; usrp->set_tx_rate(rate); std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate() / 1e6) << std::endl << std::endl; std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq / 1e6) << std::endl; for (size_t i = 0; i < channel_nums.size(); i++) { uhd::tune_request_t tune_request(freq); if (vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer"); usrp->set_tx_freq(tune_request, channel_nums[i]); } std::cout << boost::format("Actual TX Freq: %f MHz...") % (usrp->get_tx_freq() / 1e6) << std::endl << std::endl; std::cout << boost::format("Setting TX Gain: %f...") % (gain) << std::endl; for (size_t i = 0; i < channel_nums.size(); i++) usrp->set_tx_gain(gain, channel_nums[i]); std::cout << boost::format("Actual TX Gain: %f...") % (usrp->get_tx_gain()) << std::endl << std::endl; std::cout << boost::format("Setting device timestamp to 0...") << std::endl; usrp->set_time_now(uhd::time_spec_t(0.0)); // create a transmit streamer uhd::stream_args_t stream_args("fc32"); // complex floats stream_args.channels = channel_nums; uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); // allocate buffer with data to send const size_t spb = tx_stream->get_max_num_samps(); std::vector> buff(spb, std::complex(ampl, ampl)); std::vector*> buffs(channel_nums.size(), &buff.front()); std::signal(SIGINT, &sig_int_handler); if (repeat) std::cout << "Press Ctrl + C to quit..." << std::endl; double time_to_send = seconds_in_future; do { // setup metadata for the first packet uhd::tx_metadata_t md; md.start_of_burst = true; md.end_of_burst = false; md.has_time_spec = true; md.time_spec = uhd::time_spec_t(time_to_send); // the first call to send() will block this many seconds before sending: double timeout = std::max(rep_rate, seconds_in_future) + 0.1; // timeout (delay before transmit + padding) size_t num_acc_samps = 0; // number of accumulated samples while (num_acc_samps < total_num_samps) { size_t samps_to_send = total_num_samps - num_acc_samps; if (samps_to_send > spb) { samps_to_send = spb; } else { md.end_of_burst = true; } // send a single packet size_t num_tx_samps = tx_stream->send(buffs, samps_to_send, md, timeout); // do not use time spec for subsequent packets md.has_time_spec = false; md.start_of_burst = false; if (num_tx_samps < samps_to_send) { std::cerr << "Send timeout..." << std::endl; if (stop_signal_called) { exit(EXIT_FAILURE); } } if (verbose) { std::cout << boost::format("Sent packet: %u samples") % num_tx_samps << std::endl; } num_acc_samps += num_tx_samps; } time_to_send += rep_rate; std::cout << std::endl << "Waiting for async burst ACK... " << std::flush; uhd::async_metadata_t async_md; size_t acks = 0; // loop through all messages for the ACK packets (may have underflow messages in // queue) while (acks < channel_nums.size() and tx_stream->recv_async_msg(async_md, seconds_in_future)) { if (async_md.event_code == uhd::async_metadata_t::EVENT_CODE_BURST_ACK) { acks++; } } std::cout << (acks == channel_nums.size() ? "success" : "fail") << std::endl; } while (not stop_signal_called and repeat); // finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }