// // Copyright 2010-2011,2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // #include <uhd/utils/thread_priority.hpp> #include <uhd/utils/safe_main.hpp> #include <uhd/usrp/multi_usrp.hpp> #include <boost/program_options.hpp> #include <boost/thread/thread.hpp> #include <boost/format.hpp> #include <boost/lexical_cast.hpp> #include <boost/algorithm/string.hpp> #include <csignal> #include <iostream> #include <complex> namespace po = boost::program_options; static bool stop_signal_called = false; void sig_int_handler(int){stop_signal_called = true;} int UHD_SAFE_MAIN(int argc, char *argv[]){ uhd::set_thread_priority_safe(); //variables to be set by po std::string args, channel_list; double seconds_in_future; size_t total_num_samps; double rate; float ampl; double freq; double rep_rate; double gain; //setup the program options po::options_description desc("Allowed options"); desc.add_options() ("help", "help message") ("args", po::value<std::string>(&args)->default_value(""), "multi uhd device address args") ("secs", po::value<double>(&seconds_in_future)->default_value(1.5), "delay before first burst") ("repeat", "repeat burst") ("rep-delay", po::value<double>(&rep_rate)->default_value(0.5), "delay between bursts") ("nsamps", po::value<size_t>(&total_num_samps)->default_value(10000), "total number of samples to transmit") ("rate", po::value<double>(&rate)->default_value(100e6/16), "rate of outgoing samples") ("ampl", po::value<float>(&l)->default_value(float(0.3)), "amplitude of each sample") ("freq", po::value<double>(&freq)->default_value(0), "center frequency") ("gain", po::value<double>(&gain)->default_value(0), "gain") ("dilv", "specify to disable inner-loop verbose") ("channels", po::value<std::string>(&channel_list)->default_value("0"), "which channel(s) to use (specify \"0\", \"1\", \"0,1\", etc") ("int-n", "tune USRP with integer-n tuning") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //print the help message if (vm.count("help")){ std::cout << boost::format("UHD TX Timed Samples %s") % desc << std::endl; return ~0; } bool verbose = vm.count("dilv") == 0; bool repeat = vm.count("repeat") != 0; //create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; //detect which channels to use std::vector<std::string> channel_strings; std::vector<size_t> channel_nums; boost::split(channel_strings, channel_list, boost::is_any_of("\"',")); for(size_t ch = 0; ch < channel_strings.size(); ch++){ size_t chan = boost::lexical_cast<int>(channel_strings[ch]); if(chan >= usrp->get_tx_num_channels()){ throw std::runtime_error("Invalid channel(s) specified."); } else channel_nums.push_back(boost::lexical_cast<int>(channel_strings[ch])); } //set the tx sample rate std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate/1e6) << std::endl; usrp->set_tx_rate(rate); std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate()/1e6) << std::endl << std::endl; std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq/1e6) << std::endl; for(size_t i=0; i < channel_nums.size(); i++){ uhd::tune_request_t tune_request(freq); if(vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer"); usrp->set_tx_freq(tune_request, channel_nums[i]); } std::cout << boost::format("Actual TX Freq: %f MHz...") % (usrp->get_tx_freq()/1e6) << std::endl << std::endl; std::cout << boost::format("Setting TX Gain: %f...") % (gain) << std::endl; for(size_t i=0; i < channel_nums.size(); i++) usrp->set_tx_gain(gain, channel_nums[i]); std::cout << boost::format("Actual TX Gain: %f...") % (usrp->get_tx_gain()) << std::endl << std::endl; std::cout << boost::format("Setting device timestamp to 0...") << std::endl; usrp->set_time_now(uhd::time_spec_t(0.0)); //create a transmit streamer uhd::stream_args_t stream_args("fc32"); //complex floats stream_args.channels = channel_nums; uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); //allocate buffer with data to send const size_t spb = tx_stream->get_max_num_samps(); std::vector<std::complex<float> > buff(spb, std::complex<float>(ampl, ampl)); std::vector<std::complex<float> *> buffs(channel_nums.size(), &buff.front()); std::signal(SIGINT, &sig_int_handler); if(repeat) std::cout << "Press Ctrl + C to quit..." << std::endl; double time_to_send = seconds_in_future; do { //setup metadata for the first packet uhd::tx_metadata_t md; md.start_of_burst = true; md.end_of_burst = false; md.has_time_spec = true; md.time_spec = uhd::time_spec_t(time_to_send); //the first call to send() will block this many seconds before sending: double timeout = std::max(rep_rate, seconds_in_future) + 0.1; //timeout (delay before transmit + padding) size_t num_acc_samps = 0; //number of accumulated samples while(num_acc_samps < total_num_samps){ size_t samps_to_send = std::min(total_num_samps - num_acc_samps, spb); //send a single packet size_t num_tx_samps = tx_stream->send( buffs, samps_to_send, md, timeout ); //do not use time spec for subsequent packets md.has_time_spec = false; md.start_of_burst = false; if (num_tx_samps < samps_to_send) std::cerr << "Send timeout..." << std::endl; if(verbose) std::cout << boost::format("Sent packet: %u samples") % num_tx_samps << std::endl; num_acc_samps += num_tx_samps; } md.end_of_burst = true; tx_stream->send(buffs, 0, md, timeout); time_to_send += rep_rate; std::cout << std::endl << "Waiting for async burst ACK... " << std::flush; uhd::async_metadata_t async_md; bool got_async_burst_ack = false; //loop through all messages for the ACK packet (may have underflow messages in queue) while (not got_async_burst_ack and tx_stream->recv_async_msg(async_md, seconds_in_future)){ got_async_burst_ack = (async_md.event_code == uhd::async_metadata_t::EVENT_CODE_BURST_ACK); } std::cout << (got_async_burst_ack? "success" : "fail") << std::endl; } while (not stop_signal_called and repeat); //finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }