// // Copyright 2016 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include #include #include #include #include #include #include // FFT conversion #include "ascii_art_dft.hpp" /* * This example shows how to implement fast frequency hopping using an X-Series * motherboard and a TwinRX daughterboard. * * The TwinRX daughterboard is different than previous daughterboards in that it * has two RX channels and two LOs. Either channel can be set to use either LO, * allowing for the two channels to share an LO source. * * The TwinRX can be used like any other daughterboard, as the multi_usrp::set_rx_freq() * function will automatically calculate and set the two LO frequencies as needed. * However, this adds to the overall tuning time. If the LO frequencies are manually set * with the multi_usrp::set_rx_lo_freq() function, the TwinRX will will not perform the * calculation itself, resulting in a faster tune time. This example shows how to take * advantage of this as follows: * * 1. Tune across the given frequency range, storing the calculated LO frequencies along * the way. * 2. Use timed commands to tell the TwinRX to send samples to the host at given intervals. * 3. For each frequency, tune the LOs for the inactive channel for the next frequency and * receive at the current frequency. * 4. If applicable, send the next timed command for streaming. */ namespace pt = boost::posix_time; namespace po = boost::program_options; typedef std::pair lo_freqs_t; typedef std::vector > recv_buff_t; typedef std::vector recv_buffs_t; double pipeline_time; // Global objects static uhd::usrp::multi_usrp::sptr usrp; static uhd::rx_streamer::sptr rx_stream; static recv_buffs_t buffs; static size_t recv_spb, spb; static std::vector rf_freqs; static std::vector lo_freqs; static uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); static uhd::time_spec_t pipeline_timespec; static size_t last_cmd_index; // Determine the active channel (hooked to antenna) and the slave channel size_t ACTIVE_CHAN = 0; size_t UNUSED_CHAN = 1; const std::string ALL_STAGES = "all"; const int X300_COMMAND_FIFO_DEPTH = 16; static void twinrx_recv(size_t index) { size_t num_acc_samps = 0; uhd::rx_metadata_t md; while(num_acc_samps < spb) { size_t num_to_recv = std::min(recv_spb, (spb - num_acc_samps)); size_t num_recvd = rx_stream->recv( &buffs[index][num_acc_samps], num_to_recv, md, pipeline_time ); if(md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) { std::cout << index << " " << md.strerror() << std::endl; break; } num_acc_samps += num_recvd; } // Send the next stream_cmd if(last_cmd_index < buffs.size()) { stream_cmd.time_spec += pipeline_timespec; rx_stream->issue_stream_cmd(stream_cmd); ++last_cmd_index; } } static void write_fft_to_file(const std::string &fft_path) { std::cout << "Creating FFT (this may take a while)..." << std::flush; std::ofstream ofile(fft_path.c_str(), std::ios::binary); BOOST_FOREACH(const recv_buff_t &buff, buffs) { std::vector fft = acsii_art_dft::log_pwr_dft(&buff.front(), buff.size()); ofile.write((char*)&fft[0], (sizeof(float)*fft.size())); } ofile.close(); std::cout << "done." << std::endl; } int UHD_SAFE_MAIN(int argc, char *argv[]){ uhd::set_thread_priority_safe(); // Program options std::string args, fft_path, subdev; double rate, gain; double start_freq, end_freq; // Set up the program options po::options_description desc("Allowed options"); desc.add_options() ("help", "Print this help message") ("args", po::value(&args)->default_value(""), "UHD device args") ("subdev", po::value(&subdev)->default_value("A:0 A:1"), "Subdevice specification") ("start-freq", po::value(&start_freq), "Start frequency (defaults to lowest valid frequency)") ("end-freq", po::value(&end_freq), "End frequency (defaults to highest valid frequency)") ("pipeline-time", po::value(&pipeline_time)->default_value(5e-3), "Time spent tuning and receiving") ("rate", po::value(&rate)->default_value(1e6), "Incoming sample rate") ("gain", po::value(&gain)->default_value(60), "RX gain") ("spb", po::value(&spb)->default_value(1024), "Samples per buffer") ("fft-path", po::value(&fft_path), "Output an FFT to this file (optional)") ("repeat", "repeat loop until Ctrl-C is pressed") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); if(vm.count("help")) { std::cout << "TwinRX Example - " << desc << std::endl; return EXIT_SUCCESS; } // Create a USRP device std::cout << std::endl; std::cout << boost::format("Creating the USRP device with args: \"%s\"...") % args << std::endl; usrp = uhd::usrp::multi_usrp::make(args); // Make sure this is an X3xx with a TwinRX uhd::dict info = usrp->get_usrp_rx_info(); if(info.get("mboard_id").find("X3") == std::string::npos) { throw uhd::runtime_error("This example can only be used with an X-Series device."); } if(info.get("rx_id").find("TwinRX") == std::string::npos) { throw uhd::runtime_error("This example can only be used with a TwinRX daughterboard."); } // Validate frequency range uhd::freq_range_t rx_freq_range = usrp->get_rx_freq_range(); if(!vm.count("start-freq")) { start_freq = rx_freq_range.start(); } if(!vm.count("end-freq")) { end_freq = rx_freq_range.stop(); } if(start_freq > end_freq) { throw uhd::runtime_error("Start frequency must be less than end frequency."); } if((end_freq - start_freq) > 0 and (end_freq - start_freq) < rate) { throw uhd::runtime_error("The sample rate must be less than the range between the start and end frequencies."); } // Set TwinRX settings usrp->set_rx_subdev_spec(uhd::usrp::subdev_spec_t(subdev)); usrp->set_rx_antenna("RX1", 0); usrp->set_rx_antenna("RX2", 1); // Disable the LO for the unused channel usrp->set_rx_lo_source("disabled", ALL_STAGES, UNUSED_CHAN); // Set user settings std::cout << boost::format("\nSetting sample rate to: %d") % rate << std::endl; usrp->set_rx_rate(rate); std::cout << boost::format("Actual sample rate: %d") % usrp->get_rx_rate() << std::endl; std::cout << boost::format("\nSetting gain to: %d") % gain << std::endl; usrp->set_rx_gain(gain); std::cout << boost::format("Actual gain: %d") % usrp->get_rx_gain() << std::endl; // Get a stream from the device uhd::stream_args_t stream_args("fc32", "sc16"); stream_args.channels.push_back(0); rx_stream = usrp->get_rx_stream(stream_args); recv_spb = rx_stream->get_max_num_samps(); // Calculate the frequency hops for(double rx_freq = start_freq; rx_freq <= end_freq; rx_freq += rate) { rf_freqs.push_back(rx_freq); } std::cout << boost::format("\nTotal Hops: %d") % rf_freqs.size() << std::endl; // Set up buffers buffs = recv_buffs_t( rf_freqs.size(), recv_buff_t(spb) ); while(1){ /* * Each receive+tune time gets a set amount of time before moving on to the next. However, * the software needs some lead time before the USRP starts to stream the next set of samples. */ pipeline_timespec = uhd::time_spec_t(pipeline_time); pt::time_duration polltime_ptime = pt::milliseconds(pipeline_time*1000) - pt::microseconds(20); uhd::time_spec_t polltime_duration(double(polltime_ptime.total_microseconds()) / 1e9); /* * Send some initial timed commands to get started and send the rest as necessary * after receiving. */ stream_cmd.num_samps = spb; stream_cmd.stream_now = false; stream_cmd.time_spec = uhd::time_spec_t(0.0); usrp->set_time_now(uhd::time_spec_t(0.0)); size_t num_initial_cmds = std::min(X300_COMMAND_FIFO_DEPTH, rf_freqs.size()); for(last_cmd_index = 0; last_cmd_index < num_initial_cmds; ++last_cmd_index) { stream_cmd.time_spec += pipeline_timespec; rx_stream->issue_stream_cmd(stream_cmd); } std::cout << "\nScanning..." << std::flush; uhd::time_spec_t start_time = uhd::time_spec_t::get_system_time(); // The first pipeline segment is just tuning for the first receive uhd::time_spec_t polltime = usrp->get_time_now() + polltime_duration; // Initialize the first LO frequency usrp->set_rx_freq(rf_freqs[0], ACTIVE_CHAN); while(usrp->get_time_now() < polltime); for (size_t i = 0; i < rf_freqs.size() - 1; i++) { polltime = usrp->get_time_now() + polltime_duration; // Swap synthesizers by setting the LO source std::string lo_src = (i % 2) ? "companion" : "internal"; usrp->set_rx_lo_source(lo_src, ALL_STAGES, ACTIVE_CHAN); // Preconfigure the next frequency usrp->set_rx_freq(rf_freqs[i+1], UNUSED_CHAN); // Program the current frequency // This frequency was already pre-programmed in the previous iteration // so this call will only configure front-end filter, etc usrp->set_rx_freq(rf_freqs[i], ACTIVE_CHAN); twinrx_recv(i); while(usrp->get_time_now() < polltime); } uhd::time_spec_t end_time = uhd::time_spec_t::get_system_time(); std::cout << boost::format("done in %d seconds.\n") % (end_time - start_time).get_real_secs(); // Optionally convert received samples to FFT and write to file if(vm.count("fft-path")) { write_fft_to_file(fft_path); } std::cout << std::endl << "Done!" << std::endl << std::endl; if (!vm.count("repeat")){ break; } } return EXIT_SUCCESS; }