//
// Copyright 2016 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
// FFT conversion
#include "ascii_art_dft.hpp"
/*
* This example shows how to implement fast frequency hopping using an X-Series
* motherboard and a TwinRX daughterboard.
*
* The TwinRX daughterboard is different than previous daughterboards in that it
* has two RX channels and two LOs. Either channel can be set to use either LO,
* allowing for the two channels to share an LO source.
*
* The TwinRX can be used like any other daughterboard, as the multi_usrp::set_rx_freq()
* function will automatically calculate and set the two LO frequencies as needed.
* However, this adds to the overall tuning time. If the LO frequencies are manually set
* with the multi_usrp::set_rx_lo_freq() function, the TwinRX will will not perform the
* calculation itself, resulting in a faster tune time. This example shows how to take
* advantage of this as follows:
*
* 1. Tune across the given frequency range, storing the calculated LO frequencies along
* the way.
* 2. Use timed commands to tell the TwinRX to send samples to the host at given intervals.
* 3. For each frequency, tune the LOs for the inactive channel for the next frequency and
* receive at the current frequency.
* 4. If applicable, send the next timed command for streaming.
*/
namespace pt = boost::posix_time;
namespace po = boost::program_options;
typedef std::pair lo_freqs_t;
typedef std::vector > recv_buff_t;
typedef std::vector recv_buffs_t;
double pipeline_time;
// Global objects
static uhd::usrp::multi_usrp::sptr usrp;
static uhd::rx_streamer::sptr rx_stream;
static recv_buffs_t buffs;
static size_t recv_spb, spb;
static std::vector rf_freqs;
static std::vector lo_freqs;
static uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
static uhd::time_spec_t pipeline_timespec;
static size_t last_cmd_index;
// Determine the active channel (hooked to antenna) and the slave channel
size_t ACTIVE_CHAN = 0;
size_t UNUSED_CHAN = 1;
const std::string ALL_STAGES = "all";
const int X300_COMMAND_FIFO_DEPTH = 16;
static void twinrx_recv(size_t index) {
size_t num_acc_samps = 0;
uhd::rx_metadata_t md;
while(num_acc_samps < spb) {
size_t num_to_recv = std::min(recv_spb, (spb - num_acc_samps));
size_t num_recvd = rx_stream->recv(
&buffs[index][num_acc_samps],
num_to_recv, md, pipeline_time
);
if(md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
std::cout << index << " " << md.strerror() << std::endl;
break;
}
num_acc_samps += num_recvd;
}
// Send the next stream_cmd
if(last_cmd_index < buffs.size()) {
stream_cmd.time_spec += pipeline_timespec;
rx_stream->issue_stream_cmd(stream_cmd);
++last_cmd_index;
}
}
static void write_fft_to_file(const std::string &fft_path) {
std::cout << "Creating FFT (this may take a while)..." << std::flush;
std::ofstream ofile(fft_path.c_str(), std::ios::binary);
BOOST_FOREACH(const recv_buff_t &buff, buffs) {
std::vector fft = acsii_art_dft::log_pwr_dft(&buff.front(), buff.size());
ofile.write((char*)&fft[0], (sizeof(float)*fft.size()));
}
ofile.close();
std::cout << "done." << std::endl;
}
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
// Program options
std::string args, fft_path, subdev;
double rate, gain;
double start_freq, end_freq;
// Set up the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "Print this help message")
("args", po::value(&args)->default_value(""), "UHD device args")
("subdev", po::value(&subdev)->default_value("A:0 A:1"), "Subdevice specification")
("start-freq", po::value(&start_freq), "Start frequency (defaults to lowest valid frequency)")
("end-freq", po::value(&end_freq), "End frequency (defaults to highest valid frequency)")
("pipeline-time", po::value(&pipeline_time)->default_value(5e-3), "Time spent tuning and receiving")
("rate", po::value(&rate)->default_value(1e6), "Incoming sample rate")
("gain", po::value(&gain)->default_value(60), "RX gain")
("spb", po::value(&spb)->default_value(1024), "Samples per buffer")
("fft-path", po::value(&fft_path), "Output an FFT to this file (optional)")
("repeat", "repeat loop until Ctrl-C is pressed")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
if(vm.count("help")) {
std::cout << "TwinRX Example - " << desc << std::endl;
return EXIT_SUCCESS;
}
// Create a USRP device
std::cout << std::endl;
std::cout << boost::format("Creating the USRP device with args: \"%s\"...") % args << std::endl;
usrp = uhd::usrp::multi_usrp::make(args);
// Make sure this is an X3xx with a TwinRX
uhd::dict info = usrp->get_usrp_rx_info();
if(info.get("mboard_id").find("X3") == std::string::npos) {
throw uhd::runtime_error("This example can only be used with an X-Series device.");
}
if(info.get("rx_id").find("TwinRX") == std::string::npos) {
throw uhd::runtime_error("This example can only be used with a TwinRX daughterboard.");
}
// Validate frequency range
uhd::freq_range_t rx_freq_range = usrp->get_rx_freq_range();
if(!vm.count("start-freq")) {
start_freq = rx_freq_range.start();
}
if(!vm.count("end-freq")) {
end_freq = rx_freq_range.stop();
}
if(start_freq > end_freq) {
throw uhd::runtime_error("Start frequency must be less than end frequency.");
}
if((end_freq - start_freq) > 0 and (end_freq - start_freq) < rate) {
throw uhd::runtime_error("The sample rate must be less than the range between the start and end frequencies.");
}
// Set TwinRX settings
usrp->set_rx_subdev_spec(uhd::usrp::subdev_spec_t(subdev));
usrp->set_rx_antenna("RX1", 0);
usrp->set_rx_antenna("RX2", 1);
// Disable the LO for the unused channel
usrp->set_rx_lo_source("disabled", ALL_STAGES, UNUSED_CHAN);
// Set user settings
std::cout << boost::format("\nSetting sample rate to: %d") % rate << std::endl;
usrp->set_rx_rate(rate);
std::cout << boost::format("Actual sample rate: %d") % usrp->get_rx_rate() << std::endl;
std::cout << boost::format("\nSetting gain to: %d") % gain << std::endl;
usrp->set_rx_gain(gain);
std::cout << boost::format("Actual gain: %d") % usrp->get_rx_gain() << std::endl;
// Get a stream from the device
uhd::stream_args_t stream_args("fc32", "sc16");
stream_args.channels.push_back(0);
rx_stream = usrp->get_rx_stream(stream_args);
recv_spb = rx_stream->get_max_num_samps();
// Calculate the frequency hops
for(double rx_freq = start_freq; rx_freq <= end_freq; rx_freq += rate) {
rf_freqs.push_back(rx_freq);
}
std::cout << boost::format("\nTotal Hops: %d") % rf_freqs.size() << std::endl;
// Set up buffers
buffs = recv_buffs_t(
rf_freqs.size(), recv_buff_t(spb)
);
while(1){
/*
* Each receive+tune time gets a set amount of time before moving on to the next. However,
* the software needs some lead time before the USRP starts to stream the next set of samples.
*/
pipeline_timespec = uhd::time_spec_t(pipeline_time);
pt::time_duration polltime_ptime = pt::milliseconds(pipeline_time*1000) - pt::microseconds(20);
uhd::time_spec_t polltime_duration(double(polltime_ptime.total_microseconds()) / 1e9);
/*
* Send some initial timed commands to get started and send the rest as necessary
* after receiving.
*/
stream_cmd.num_samps = spb;
stream_cmd.stream_now = false;
stream_cmd.time_spec = uhd::time_spec_t(0.0);
usrp->set_time_now(uhd::time_spec_t(0.0));
size_t num_initial_cmds = std::min(X300_COMMAND_FIFO_DEPTH, rf_freqs.size());
for(last_cmd_index = 0; last_cmd_index < num_initial_cmds; ++last_cmd_index) {
stream_cmd.time_spec += pipeline_timespec;
rx_stream->issue_stream_cmd(stream_cmd);
}
std::cout << "\nScanning..." << std::flush;
uhd::time_spec_t start_time = uhd::time_spec_t::get_system_time();
// The first pipeline segment is just tuning for the first receive
uhd::time_spec_t polltime = usrp->get_time_now() + polltime_duration;
// Initialize the first LO frequency
usrp->set_rx_freq(rf_freqs[0], ACTIVE_CHAN);
while(usrp->get_time_now() < polltime);
for (size_t i = 0; i < rf_freqs.size() - 1; i++) {
polltime = usrp->get_time_now() + polltime_duration;
// Swap synthesizers by setting the LO source
std::string lo_src = (i % 2) ? "companion" : "internal";
usrp->set_rx_lo_source(lo_src, ALL_STAGES, ACTIVE_CHAN);
// Preconfigure the next frequency
usrp->set_rx_freq(rf_freqs[i+1], UNUSED_CHAN);
// Program the current frequency
// This frequency was already pre-programmed in the previous iteration
// so this call will only configure front-end filter, etc
usrp->set_rx_freq(rf_freqs[i], ACTIVE_CHAN);
twinrx_recv(i);
while(usrp->get_time_now() < polltime);
}
uhd::time_spec_t end_time = uhd::time_spec_t::get_system_time();
std::cout << boost::format("done in %d seconds.\n") % (end_time - start_time).get_real_secs();
// Optionally convert received samples to FFT and write to file
if(vm.count("fft-path")) {
write_fft_to_file(fft_path);
}
std::cout << std::endl << "Done!" << std::endl << std::endl;
if (!vm.count("repeat")){
break;
}
}
return EXIT_SUCCESS;
}