// // Copyright 2012,2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include #include #include #include #include #include #include #include #define SAMP_RATE 1e6 namespace po = boost::program_options; typedef std::pair double_pair; //BOOST_FOREACH doesn't like commas typedef std::vector > pair_vector; /************************************************************************ * Misc functions ************************************************************************/ std::string MHz_str(double freq){ std::string nice_string = std::string(str(boost::format("%5.2f MHz") % (freq / 1e6))); return nice_string; } std::string return_usrp_config_string(uhd::usrp::multi_usrp::sptr usrp, int chan, bool test_tx, bool test_rx, bool is_b2xx){ uhd::dict tx_info = usrp->get_usrp_tx_info(chan); uhd::dict rx_info = usrp->get_usrp_rx_info(chan); std::string info_string; std::string mboard_id, mboard_serial; std::string tx_serial, tx_subdev_name, tx_subdev_spec; std::string rx_serial, rx_subdev_name, rx_subdev_spec; mboard_id = tx_info.get("mboard_id"); if(tx_info.get("mboard_serial") == "") mboard_serial = "no serial"; else mboard_serial = tx_info.get("mboard_serial"); info_string = str(boost::format("Motherboard: %s (%s)\n") % mboard_id % mboard_serial); if(test_tx){ if(tx_info.get("tx_serial") == "") tx_serial = "no serial"; else tx_serial = tx_info.get("tx_serial"); tx_subdev_name = tx_info.get("tx_subdev_name"); tx_subdev_spec = tx_info.get("tx_subdev_spec"); info_string += is_b2xx ? str(boost::format("TX: %s (%s)") % tx_subdev_name % tx_subdev_spec) : str(boost::format("TX: %s (%s, %s)") % tx_subdev_name % tx_serial % tx_subdev_spec); } if(test_tx and test_rx) info_string += "\n"; if(test_rx){ if(rx_info.get("rx_serial") == "") rx_serial = "no serial"; else rx_serial = rx_info.get("rx_serial"); rx_subdev_name = rx_info.get("rx_subdev_name"); rx_subdev_spec = rx_info.get("rx_subdev_spec"); info_string += is_b2xx ? str(boost::format("RX: %s (%s)") % rx_subdev_name % rx_subdev_spec) : str(boost::format("RX: %s (%s, %s)") % rx_subdev_name % rx_serial % rx_subdev_spec); } return info_string; } std::string coercion_test(uhd::usrp::multi_usrp::sptr usrp, std::string type, int chan, bool test_gain, double freq_step, double gain_step, bool verbose){ //Getting USRP info uhd::dict usrp_info = (type == "TX") ? usrp->get_usrp_tx_info(chan) : usrp->get_usrp_rx_info(chan); std::string subdev_name = (type == "TX") ? usrp_info.get("tx_subdev_name") : usrp_info.get("rx_subdev_name"); std::string subdev_spec = (type == "TX") ? usrp_info.get("tx_subdev_spec") : usrp_info.get("rx_subdev_spec"); //Establish frequency range std::vector freqs; std::vector xcvr_freqs; //XCVR2450 has two ranges uhd::freq_range_t freq_ranges = (type == "TX") ? usrp->get_fe_tx_freq_range(chan) : usrp->get_fe_rx_freq_range(chan); std::cout << boost::format("\nTesting %s coercion...") % type << std::endl; BOOST_FOREACH(const uhd::range_t &range, freq_ranges){ double freq_begin = range.start(); double freq_end = range.stop(); if(subdev_name.find("XCVR2450") == 0){ xcvr_freqs.push_back(freq_begin); xcvr_freqs.push_back(freq_end); } double current_freq = freq_begin; while(current_freq < freq_end){ freqs.push_back(current_freq); current_freq += freq_step; } if(freq_end != *freqs.end()) freqs.push_back(freq_end); } std::vector gains; if(test_gain){ //Establish gain range uhd::gain_range_t gain_range = (type == "TX") ? usrp->get_tx_gain_range(chan) : usrp->get_rx_gain_range(chan); double gain_begin = gain_range.start(); //Start gain at 0 if range begins negative if(gain_begin < 0.0) gain_begin = 0.0; double gain_end = gain_range.stop(); double current_gain = gain_begin; while(current_gain < gain_end){ gains.push_back(current_gain); current_gain += gain_step; } gains.push_back(gain_end); } //Establish error-storing variables std::vector bad_tune_freqs; std::vector no_lock_freqs; pair_vector bad_gain_vals; //Sensor names std::vector dboard_sensor_names = (type == "TX") ? usrp->get_tx_sensor_names(chan) : usrp->get_rx_sensor_names(chan); std::vector mboard_sensor_names = usrp->get_mboard_sensor_names(); bool has_sensor = (std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked")) != dboard_sensor_names.end(); BOOST_FOREACH(double freq, freqs){ //Testing for successful frequency tune if(type == "TX") usrp->set_tx_freq(freq,chan); else usrp->set_rx_freq(freq,chan); boost::this_thread::sleep(boost::posix_time::microseconds(long(1000))); double actual_freq = (type == "TX") ? usrp->get_tx_freq(chan) : usrp->get_rx_freq(chan); if(freq == 0.0){ if(floor(actual_freq + 0.5) == 0.0){ if(verbose) std::cout << boost::format("\n%s frequency successfully tuned to %s.") % type % MHz_str(freq) << std::endl; } else{ if(verbose) std::cout << boost::format("\n%s frequency tuned to %s instead of %s.") % type % MHz_str(actual_freq) % MHz_str(freq) << std::endl; bad_tune_freqs.push_back(freq); } } else{ if((freq / actual_freq > 0.9999) and (freq / actual_freq < 1.0001)){ if(verbose) std::cout << boost::format("\n%s frequency successfully tuned to %s.") % type % MHz_str(freq) << std::endl; } else{ if(verbose) std::cout << boost::format("\n%s frequency tuned to %s instead of %s.") % type % MHz_str(actual_freq) % MHz_str(freq) << std::endl; bad_tune_freqs.push_back(freq); } } //Testing for successful lock if(has_sensor){ bool is_locked = false; for(int i = 0; i < 1000; i++){ boost::this_thread::sleep(boost::posix_time::microseconds(1000)); if(usrp->get_tx_sensor("lo_locked",0).to_bool()){ is_locked = true; break; } } if(is_locked){ if(verbose) std::cout << boost::format("LO successfully locked at %s frequency %s.") % type % MHz_str(freq) << std::endl; } else{ if(verbose) std::cout << boost::format("LO did not successfully lock at %s frequency %s.") % type % MHz_str(freq) << std::endl; no_lock_freqs.push_back(freq); } } if(test_gain){ //Testing for successful gain tune BOOST_FOREACH(double gain, gains){ if(type == "TX") usrp->set_tx_gain(gain,chan); else usrp->set_rx_gain(gain,chan); boost::this_thread::sleep(boost::posix_time::microseconds(1000)); double actual_gain = (type == "TX") ? usrp->get_tx_gain(chan) : usrp->get_rx_gain(chan); if(gain == 0.0){ if(actual_gain == 0.0){ if(verbose) std::cout << boost::format("Gain successfully set to %5.2f at %s frequency %s.") % gain % type % MHz_str(freq) << std::endl; } else{ if(verbose) std::cout << boost::format("Gain set to %5.2f instead of %5.2f at %s frequency %s.") % actual_gain % gain % type % MHz_str(freq) << std::endl; bad_gain_vals.push_back(std::make_pair(freq, gain)); } } else{ if((gain / actual_gain) > 0.9999 and (gain / actual_gain) < 1.0001){ if(verbose) std::cout << boost::format("Gain successfully set to %5.2f at %s frequency %s.") % gain % type % MHz_str(freq) << std::endl; } else{ if(verbose) std::cout << boost::format("Gain set to %5.2f instead of %5.2f at %s frequency %s.") % actual_gain % gain % type % MHz_str(freq) << std::endl; bad_gain_vals.push_back(std::make_pair(freq, gain)); } } } } } std::string results = str(boost::format("%s Summary:\n") % type); if(subdev_name.find("XCVR2450") == 0){ results += str(boost::format("Frequency Range: %s - %s, %s - %s\n") % MHz_str(xcvr_freqs[0]) % MHz_str(xcvr_freqs[1]) % MHz_str(xcvr_freqs[2]) % MHz_str(xcvr_freqs[3])); } else results += str(boost::format("Frequency Range: %s - %s (Step: %s)\n") % MHz_str(freqs.front()) % MHz_str(freqs.back()) % MHz_str(freq_step)); if(test_gain) results += str(boost::format("Gain Range:%5.2f - %5.2f (Step:%5.2f)\n") % gains.front() % gains.back() % gain_step); if(bad_tune_freqs.empty()) results += "USRP successfully tuned to all frequencies."; else if(bad_tune_freqs.size() > 10 and not verbose){ //If tuning fails at many values, don't print them all results += str(boost::format("USRP did not successfully tune at %d frequencies.") % bad_tune_freqs.size()); } else{ results += "USRP did not successfully tune to the following frequencies: "; BOOST_FOREACH(double bad_freq, bad_tune_freqs){ if(bad_freq != *bad_tune_freqs.begin()) results += ", "; results += MHz_str(bad_freq); } } if(has_sensor){ results += "\n"; if(no_lock_freqs.empty()) results += "LO successfully locked at all frequencies."; else if(no_lock_freqs.size() > 10 and not verbose){ //If locking fails at many values, don't print them all results += str(boost::format("USRP did not successfully lock at %d frequencies.") % no_lock_freqs.size()); } else{ results += "LO did not lock at the following frequencies: "; BOOST_FOREACH(double bad_freq, no_lock_freqs){ if(bad_freq != *no_lock_freqs.begin()) results += ", "; results += MHz_str(bad_freq); } } } if(test_gain){ results += "\n"; if(bad_gain_vals.empty()) results += "USRP successfully set all specified gain values at all frequencies."; else if(bad_gain_vals.size() > 10 and not verbose){ //If gain fails at many values, don't print them all results += str(boost::format("USRP did not successfully set gain at %d values.") % bad_gain_vals.size()); } else{ results += "USRP did not successfully set gain under the following circumstances:"; BOOST_FOREACH(double_pair bad_pair, bad_gain_vals){ double bad_freq = bad_pair.first; double bad_gain = bad_pair.second; results += str(boost::format("\nFrequency: %s, Gain: %5.2f") % MHz_str(bad_freq) % bad_gain); } } } return results; } /************************************************************************ * Initial Setup ************************************************************************/ int UHD_SAFE_MAIN(int argc, char *argv[]){ //Variables int chan; std::string args; double freq_step, gain_step; std::string ref; std::string tx_results; std::string rx_results; std::string usrp_config; //Set up the program options po::options_description desc("Allowed Options"); desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "Specify the UHD device") ("chan", po::value(&chan)->default_value(0), "Specify multi_usrp channel") ("freq-step", po::value(&freq_step)->default_value(100e6), "Specify the delta between frequency scans") ("gain-step", po::value(&gain_step)->default_value(1.0), "Specify the delta between gain scans") ("tx", "Specify to test TX frequency and gain coercion") ("rx", "Specify to test RX frequency and gain coercion") ("ref", po::value(&ref)->default_value("internal"), "Waveform type: internal, external, or mimo") ("no-tx-gain", "Do not test TX gain") ("no-rx-gain", "Do not test RX gain") ("verbose", "Output every frequency and gain check instead of just final summary") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //Help messages, errors if(vm.count("help") > 0){ std::cout << "UHD Daughterboard Coercion Test\n" "This program tests your USRP daughterboard(s) to\n" "make sure that they can successfully tune to all\n" "frequencies and gains in their advertised ranges.\n\n"; std::cout << desc << std::endl; return EXIT_SUCCESS; } if(vm.count("tx") + vm.count("rx") == 0){ std::cout << desc << std::endl; std::cout << "Specify --tx to test for TX frequency coercion\n" "Specify --rx to test for RX frequency coercion\n"; return EXIT_FAILURE; } //Create a USRP device std::cout << std::endl; uhd::device_addrs_t device_addrs = uhd::device::find(args); std::cout << boost::format("Creating the USRP device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); std::cout << std::endl << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; usrp->set_tx_rate(SAMP_RATE); usrp->set_rx_rate(SAMP_RATE); //Boolean variables based on command line input bool test_tx = vm.count("tx") > 0; bool test_rx = vm.count("rx") > 0; bool test_tx_gain = !(vm.count("no-tx-gain") > 0) and (usrp->get_tx_gain_range().stop() > 0); bool test_rx_gain = !(vm.count("no-rx-gain") > 0) and (usrp->get_rx_gain_range().stop() > 0); bool verbose = vm.count("verbose") > 0; if(ref != "internal" and ref != "external" and ref != "mimo"){ std::cout << desc << std::endl; std::cout << "REF must equal internal, external, or mimo." << std::endl; return EXIT_FAILURE; } //Use TX mboard ID to determine if this is a B2xx, will still return value if there is no TX std::string tx_mboard_id = usrp->get_usrp_tx_info(chan).get("mboard_id"); bool is_b2xx = (tx_mboard_id == "B200" or tx_mboard_id == "B210"); //Don't perform daughterboard validity checks for B200/B210 if((not is_b2xx) and test_tx){ std::string tx_dboard_name = usrp->get_usrp_tx_info(chan).get("tx_id"); if(tx_dboard_name == "Basic TX (0x0000)" or tx_dboard_name == "LF TX (0x000e)"){ std::cout << desc << std::endl; std::cout << boost::format("This test does not work with the %s daughterboard.") % tx_dboard_name << std::endl; return EXIT_FAILURE; } else if(tx_dboard_name == "Unknown (0xffff)"){ std::cout << desc << std::endl; std::cout << "This daughterboard is unrecognized, or there is no TX daughterboard." << std::endl; return EXIT_FAILURE; } } //Don't perform daughterboard validity checks for B200/B210 if((not is_b2xx) and test_rx){ std::string rx_dboard_name = usrp->get_usrp_rx_info(chan).get("rx_id"); if(rx_dboard_name == "Basic RX (0x0001)" or rx_dboard_name == "LF RX (0x000f)"){ std::cout << desc << std::endl; std::cout << boost::format("This test does not work with the %s daughterboard.") % rx_dboard_name << std::endl; return EXIT_FAILURE; } else if(rx_dboard_name == "Unknown (0xffff)"){ std::cout << desc << std::endl; std::cout << "This daughterboard is unrecognized, or there is no RX daughterboard." << std::endl; return EXIT_FAILURE; } } //Setting clock source usrp->set_clock_source(ref); boost::this_thread::sleep(boost::posix_time::seconds(1)); std::vector sensor_names = usrp->get_mboard_sensor_names(0); if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) { uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked",0); std::cout << boost::format("Checking MIMO lock: %s ...") % mimo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(mimo_locked.to_bool()); } if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) { uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked",0); std::cout << boost::format("Checking REF lock: %s ...") % ref_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(ref_locked.to_bool()); } usrp_config = return_usrp_config_string(usrp, chan, test_tx, test_rx, is_b2xx); if(test_tx) tx_results = coercion_test(usrp, "TX", chan, test_tx_gain, freq_step, gain_step, verbose); if(test_rx) rx_results = coercion_test(usrp, "RX", chan, test_rx_gain, freq_step, gain_step, verbose); std::cout << std::endl << usrp_config << std::endl << std::endl; if(test_tx) std::cout << tx_results << std::endl; if(test_tx and test_rx) std::cout << std::endl; if(test_rx) std::cout << rx_results << std::endl; return EXIT_SUCCESS; }