//
// Copyright 2012,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define SAMP_RATE 1e6
namespace po = boost::program_options;
typedef std::pair double_pair; //BOOST_FOREACH doesn't like commas
typedef std::vector > pair_vector;
/************************************************************************
* Misc functions
************************************************************************/
std::string MHz_str(double freq){
std::string nice_string = std::string(str(boost::format("%5.2f MHz") % (freq / 1e6)));
return nice_string;
}
std::string return_usrp_config_string(uhd::usrp::multi_usrp::sptr usrp, int chan, bool test_tx, bool test_rx, bool is_b2xx){
uhd::dict tx_info = usrp->get_usrp_tx_info(chan);
uhd::dict rx_info = usrp->get_usrp_rx_info(chan);
std::string info_string;
std::string mboard_id, mboard_serial;
std::string tx_serial, tx_subdev_name, tx_subdev_spec;
std::string rx_serial, rx_subdev_name, rx_subdev_spec;
mboard_id = tx_info.get("mboard_id");
if(tx_info.get("mboard_serial") == "") mboard_serial = "no serial";
else mboard_serial = tx_info.get("mboard_serial");
info_string = str(boost::format("Motherboard: %s (%s)\n") % mboard_id % mboard_serial);
if(test_tx){
if(tx_info.get("tx_serial") == "") tx_serial = "no serial";
else tx_serial = tx_info.get("tx_serial");
tx_subdev_name = tx_info.get("tx_subdev_name");
tx_subdev_spec = tx_info.get("tx_subdev_spec");
info_string += is_b2xx ? str(boost::format("TX: %s (%s)")
% tx_subdev_name % tx_subdev_spec)
: str(boost::format("TX: %s (%s, %s)")
% tx_subdev_name % tx_serial % tx_subdev_spec);
}
if(test_tx and test_rx) info_string += "\n";
if(test_rx){
if(rx_info.get("rx_serial") == "") rx_serial = "no serial";
else rx_serial = rx_info.get("rx_serial");
rx_subdev_name = rx_info.get("rx_subdev_name");
rx_subdev_spec = rx_info.get("rx_subdev_spec");
info_string += is_b2xx ? str(boost::format("RX: %s (%s)")
% rx_subdev_name % rx_subdev_spec)
: str(boost::format("RX: %s (%s, %s)")
% rx_subdev_name % rx_serial % rx_subdev_spec);
}
return info_string;
}
std::string coercion_test(uhd::usrp::multi_usrp::sptr usrp, std::string type, int chan,
bool test_gain, double freq_step, double gain_step, bool verbose){
//Getting USRP info
uhd::dict usrp_info = (type == "TX") ? usrp->get_usrp_tx_info(chan)
: usrp->get_usrp_rx_info(chan);
std::string subdev_name = (type == "TX") ? usrp_info.get("tx_subdev_name")
: usrp_info.get("rx_subdev_name");
std::string subdev_spec = (type == "TX") ? usrp_info.get("tx_subdev_spec")
: usrp_info.get("rx_subdev_spec");
//Establish frequency range
std::vector freqs;
std::vector xcvr_freqs; //XCVR2450 has two ranges
uhd::freq_range_t freq_ranges = (type == "TX") ? usrp->get_fe_tx_freq_range(chan)
: usrp->get_fe_rx_freq_range(chan);
std::cout << boost::format("\nTesting %s coercion...") % type << std::endl;
BOOST_FOREACH(const uhd::range_t &range, freq_ranges){
double freq_begin = range.start();
double freq_end = range.stop();
if(subdev_name.find("XCVR2450") == 0){
xcvr_freqs.push_back(freq_begin);
xcvr_freqs.push_back(freq_end);
}
double current_freq = freq_begin;
while(current_freq < freq_end){
freqs.push_back(current_freq);
current_freq += freq_step;
}
if(freq_end != *freqs.end()) freqs.push_back(freq_end);
}
std::vector gains;
if(test_gain){
//Establish gain range
uhd::gain_range_t gain_range = (type == "TX") ? usrp->get_tx_gain_range(chan)
: usrp->get_rx_gain_range(chan);
double gain_begin = gain_range.start();
//Start gain at 0 if range begins negative
if(gain_begin < 0.0) gain_begin = 0.0;
double gain_end = gain_range.stop();
double current_gain = gain_begin;
while(current_gain < gain_end){
gains.push_back(current_gain);
current_gain += gain_step;
}
gains.push_back(gain_end);
}
//Establish error-storing variables
std::vector bad_tune_freqs;
std::vector no_lock_freqs;
pair_vector bad_gain_vals;
//Sensor names
std::vector dboard_sensor_names = (type == "TX") ? usrp->get_tx_sensor_names(chan)
: usrp->get_rx_sensor_names(chan);
std::vector mboard_sensor_names = usrp->get_mboard_sensor_names();
bool has_sensor = (std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked")) != dboard_sensor_names.end();
BOOST_FOREACH(double freq, freqs){
//Testing for successful frequency tune
if(type == "TX") usrp->set_tx_freq(freq,chan);
else usrp->set_rx_freq(freq,chan);
boost::this_thread::sleep(boost::posix_time::microseconds(long(1000)));
double actual_freq = (type == "TX") ? usrp->get_tx_freq(chan)
: usrp->get_rx_freq(chan);
if(freq == 0.0){
if(floor(actual_freq + 0.5) == 0.0){
if(verbose) std::cout << boost::format("\n%s frequency successfully tuned to %s.")
% type % MHz_str(freq) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\n%s frequency tuned to %s instead of %s.")
% type % MHz_str(actual_freq) % MHz_str(freq) << std::endl;
bad_tune_freqs.push_back(freq);
}
}
else{
if((freq / actual_freq > 0.9999) and (freq / actual_freq < 1.0001)){
if(verbose) std::cout << boost::format("\n%s frequency successfully tuned to %s.")
% type % MHz_str(freq) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\n%s frequency tuned to %s instead of %s.")
% type % MHz_str(actual_freq) % MHz_str(freq) << std::endl;
bad_tune_freqs.push_back(freq);
}
}
//Testing for successful lock
if(has_sensor){
bool is_locked = false;
for(int i = 0; i < 1000; i++){
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
if(usrp->get_tx_sensor("lo_locked",0).to_bool()){
is_locked = true;
break;
}
}
if(is_locked){
if(verbose) std::cout << boost::format("LO successfully locked at %s frequency %s.")
% type % MHz_str(freq) << std::endl;
}
else{
if(verbose) std::cout << boost::format("LO did not successfully lock at %s frequency %s.")
% type % MHz_str(freq) << std::endl;
no_lock_freqs.push_back(freq);
}
}
if(test_gain){
//Testing for successful gain tune
BOOST_FOREACH(double gain, gains){
if(type == "TX") usrp->set_tx_gain(gain,chan);
else usrp->set_rx_gain(gain,chan);
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
double actual_gain = (type == "TX") ? usrp->get_tx_gain(chan)
: usrp->get_rx_gain(chan);
if(gain == 0.0){
if(actual_gain == 0.0){
if(verbose) std::cout << boost::format("Gain successfully set to %5.2f at %s frequency %s.")
% gain % type % MHz_str(freq) << std::endl;
}
else{
if(verbose) std::cout << boost::format("Gain set to %5.2f instead of %5.2f at %s frequency %s.")
% actual_gain % gain % type % MHz_str(freq) << std::endl;
bad_gain_vals.push_back(std::make_pair(freq, gain));
}
}
else{
if((gain / actual_gain) > 0.9999 and (gain / actual_gain) < 1.0001){
if(verbose) std::cout << boost::format("Gain successfully set to %5.2f at %s frequency %s.")
% gain % type % MHz_str(freq) << std::endl;
}
else{
if(verbose) std::cout << boost::format("Gain set to %5.2f instead of %5.2f at %s frequency %s.")
% actual_gain % gain % type % MHz_str(freq) << std::endl;
bad_gain_vals.push_back(std::make_pair(freq, gain));
}
}
}
}
}
std::string results = str(boost::format("%s Summary:\n") % type);
if(subdev_name.find("XCVR2450") == 0){
results += str(boost::format("Frequency Range: %s - %s, %s - %s\n")
% MHz_str(xcvr_freqs[0]) % MHz_str(xcvr_freqs[1])
% MHz_str(xcvr_freqs[2]) % MHz_str(xcvr_freqs[3]));
}
else results += str(boost::format("Frequency Range: %s - %s (Step: %s)\n")
% MHz_str(freqs.front()) % MHz_str(freqs.back()) % MHz_str(freq_step));
if(test_gain) results += str(boost::format("Gain Range:%5.2f - %5.2f (Step:%5.2f)\n")
% gains.front() % gains.back() % gain_step);
if(bad_tune_freqs.empty()) results += "USRP successfully tuned to all frequencies.";
else if(bad_tune_freqs.size() > 10 and not verbose){
//If tuning fails at many values, don't print them all
results += str(boost::format("USRP did not successfully tune at %d frequencies.")
% bad_tune_freqs.size());
}
else{
results += "USRP did not successfully tune to the following frequencies: ";
BOOST_FOREACH(double bad_freq, bad_tune_freqs){
if(bad_freq != *bad_tune_freqs.begin()) results += ", ";
results += MHz_str(bad_freq);
}
}
if(has_sensor){
results += "\n";
if(no_lock_freqs.empty()) results += "LO successfully locked at all frequencies.";
else if(no_lock_freqs.size() > 10 and not verbose){
//If locking fails at many values, don't print them all
results += str(boost::format("USRP did not successfully lock at %d frequencies.")
% no_lock_freqs.size());
}
else{
results += "LO did not lock at the following frequencies: ";
BOOST_FOREACH(double bad_freq, no_lock_freqs){
if(bad_freq != *no_lock_freqs.begin()) results += ", ";
results += MHz_str(bad_freq);
}
}
}
if(test_gain){
results += "\n";
if(bad_gain_vals.empty()) results += "USRP successfully set all specified gain values at all frequencies.";
else if(bad_gain_vals.size() > 10 and not verbose){
//If gain fails at many values, don't print them all
results += str(boost::format("USRP did not successfully set gain at %d values.")
% bad_gain_vals.size());
}
else{
results += "USRP did not successfully set gain under the following circumstances:";
BOOST_FOREACH(double_pair bad_pair, bad_gain_vals){
double bad_freq = bad_pair.first;
double bad_gain = bad_pair.second;
results += str(boost::format("\nFrequency: %s, Gain: %5.2f") % MHz_str(bad_freq) % bad_gain);
}
}
}
return results;
}
/************************************************************************
* Initial Setup
************************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
//Variables
int chan;
std::string args;
double freq_step, gain_step;
std::string ref;
std::string tx_results;
std::string rx_results;
std::string usrp_config;
//Set up the program options
po::options_description desc("Allowed Options");
desc.add_options()
("help", "help message")
("args", po::value(&args)->default_value(""), "Specify the UHD device")
("chan", po::value(&chan)->default_value(0), "Specify multi_usrp channel")
("freq-step", po::value(&freq_step)->default_value(100e6), "Specify the delta between frequency scans")
("gain-step", po::value(&gain_step)->default_value(1.0), "Specify the delta between gain scans")
("tx", "Specify to test TX frequency and gain coercion")
("rx", "Specify to test RX frequency and gain coercion")
("ref", po::value(&ref)->default_value("internal"), "Waveform type: internal, external, or mimo")
("no-tx-gain", "Do not test TX gain")
("no-rx-gain", "Do not test RX gain")
("verbose", "Output every frequency and gain check instead of just final summary")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//Help messages, errors
if(vm.count("help") > 0){
std::cout << "UHD Daughterboard Coercion Test\n"
"This program tests your USRP daughterboard(s) to\n"
"make sure that they can successfully tune to all\n"
"frequencies and gains in their advertised ranges.\n\n";
std::cout << desc << std::endl;
return EXIT_SUCCESS;
}
if(vm.count("tx") + vm.count("rx") == 0){
std::cout << desc << std::endl;
std::cout << "Specify --tx to test for TX frequency coercion\n"
"Specify --rx to test for RX frequency coercion\n";
return EXIT_FAILURE;
}
//Create a USRP device
std::cout << std::endl;
uhd::device_addrs_t device_addrs = uhd::device::find(args, uhd::device::USRP);
std::cout << boost::format("Creating the USRP device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << std::endl << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
usrp->set_tx_rate(SAMP_RATE);
usrp->set_rx_rate(SAMP_RATE);
//Boolean variables based on command line input
bool test_tx = vm.count("tx") > 0;
bool test_rx = vm.count("rx") > 0;
bool test_tx_gain = !(vm.count("no-tx-gain") > 0) and (usrp->get_tx_gain_range().stop() > 0);
bool test_rx_gain = !(vm.count("no-rx-gain") > 0) and (usrp->get_rx_gain_range().stop() > 0);
bool verbose = vm.count("verbose") > 0;
if(ref != "internal" and ref != "external" and ref != "mimo"){
std::cout << desc << std::endl;
std::cout << "REF must equal internal, external, or mimo." << std::endl;
return EXIT_FAILURE;
}
//Use TX mboard ID to determine if this is a B2xx, will still return value if there is no TX
std::string tx_mboard_id = usrp->get_usrp_tx_info(chan).get("mboard_id");
bool is_b2xx = (tx_mboard_id == "B200" or tx_mboard_id == "B210");
//Don't perform daughterboard validity checks for B200/B210
if((not is_b2xx) and test_tx){
std::string tx_dboard_name = usrp->get_usrp_tx_info(chan).get("tx_id");
if(tx_dboard_name == "Basic TX (0x0000)" or tx_dboard_name == "LF TX (0x000e)"){
std::cout << desc << std::endl;
std::cout << boost::format("This test does not work with the %s daughterboard.")
% tx_dboard_name << std::endl;
return EXIT_FAILURE;
}
else if(tx_dboard_name == "Unknown (0xffff)"){
std::cout << desc << std::endl;
std::cout << "This daughterboard is unrecognized, or there is no TX daughterboard." << std::endl;
return EXIT_FAILURE;
}
}
//Don't perform daughterboard validity checks for B200/B210
if((not is_b2xx) and test_rx){
std::string rx_dboard_name = usrp->get_usrp_rx_info(chan).get("rx_id");
if(rx_dboard_name == "Basic RX (0x0001)" or rx_dboard_name == "LF RX (0x000f)"){
std::cout << desc << std::endl;
std::cout << boost::format("This test does not work with the %s daughterboard.")
% rx_dboard_name << std::endl;
return EXIT_FAILURE;
}
else if(rx_dboard_name == "Unknown (0xffff)"){
std::cout << desc << std::endl;
std::cout << "This daughterboard is unrecognized, or there is no RX daughterboard." << std::endl;
return EXIT_FAILURE;
}
}
//Setting clock source
usrp->set_clock_source(ref);
boost::this_thread::sleep(boost::posix_time::seconds(1));
std::vector sensor_names = usrp->get_mboard_sensor_names(0);
if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) {
uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked",0);
std::cout << boost::format("Checking MIMO lock: %s ...") % mimo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) {
uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked",0);
std::cout << boost::format("Checking REF lock: %s ...") % ref_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
usrp_config = return_usrp_config_string(usrp, chan, test_tx, test_rx, is_b2xx);
if(test_tx) tx_results = coercion_test(usrp, "TX", chan, test_tx_gain, freq_step, gain_step, verbose);
if(test_rx) rx_results = coercion_test(usrp, "RX", chan, test_rx_gain, freq_step, gain_step, verbose);
std::cout << std::endl << usrp_config << std::endl << std::endl;
if(test_tx) std::cout << tx_results << std::endl;
if(test_tx and test_rx) std::cout << std::endl;
if(test_rx) std::cout << rx_results << std::endl;
return EXIT_SUCCESS;
}