//
// Copyright 2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace po = boost::program_options;
/************************************************************************
* Misc functions
************************************************************************/
std::string return_MHz_string(double freq){
std::string nice_string = std::string(str(boost::format("%5.2f MHz") % (freq / 1e6)));
return nice_string;
}
std::string return_USRP_config_string(uhd::usrp::multi_usrp::sptr usrp, bool test_tx, bool test_rx){
uhd::dict tx_info = usrp->get_usrp_tx_info();
uhd::dict rx_info = usrp->get_usrp_rx_info();
std::string info_string;
std::string mboard_id, mboard_serial;
std::string tx_serial, tx_subdev_name, tx_subdev_spec;
std::string rx_serial, rx_subdev_name, rx_subdev_spec;
mboard_id = tx_info.get("mboard_id");
if(tx_info.get("mboard_serial") != "") mboard_serial = tx_info.get("mboard_serial");
else mboard_serial = "no serial";
info_string = std::string(str(boost::format("Motherboard: %s (%s)\n") % mboard_id % mboard_serial));
if(test_tx){
if(tx_info.get("tx_serial") != "") tx_serial = tx_info.get("tx_serial");
else tx_serial = "no serial";
tx_subdev_name = tx_info.get("tx_subdev_name");
tx_subdev_spec = tx_info.get("tx_subdev_spec");
info_string += std::string(str(boost::format("TX: %s (%s, %s)") % tx_subdev_name % tx_serial % tx_subdev_spec));
}
if(test_tx and test_rx) info_string += "\n";
if(test_rx){
if(rx_info.get("rx_serial") != "") rx_serial = rx_info.get("rx_serial");
else rx_serial = "no serial";
rx_subdev_name = rx_info.get("rx_subdev_name");
rx_subdev_spec = rx_info.get("rx_subdev_spec");
info_string += std::string(str(boost::format("RX: %s (%s, %s)") % rx_subdev_name % rx_serial % rx_subdev_spec));
}
return info_string;
}
/************************************************************************
* TX Frequency/Gain Coercion
************************************************************************/
std::string tx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbose){
//Establish frequency range
std::vector freqs;
std::vector xcvr_freqs;
BOOST_FOREACH(const uhd::range_t &range, usrp->get_fe_tx_freq_range()){
double freq_begin = range.start();
double freq_end = range.stop();
double freq_step;
if(usrp->get_usrp_tx_info().get("tx_subdev_name") == "XCVR2450 TX"){
xcvr_freqs.push_back(freq_begin);
xcvr_freqs.push_back(freq_end);
}
if(freq_end - freq_begin > 1000e6) freq_step = 100e6;
else if(freq_end - freq_begin < 300e6) freq_step = 10e6;
else freq_step = 50e6;
double current_freq = freq_begin;
while(current_freq < freq_end){
freqs.push_back(current_freq);
current_freq += freq_step;
}
if(freq_end != *freqs.end()) freqs.push_back(freq_end);
}
std::vector gains;
if(test_gain){
//Establish gain range
double gain_begin = usrp->get_tx_gain_range().start();
if(gain_begin < 0.0) gain_begin = 0.0;
double gain_end = usrp->get_tx_gain_range().stop();
double current_gain = gain_begin;
while(current_gain < gain_end){
gains.push_back(current_gain);
current_gain++;
}
if(gain_end != gains.back()) gains.push_back(gain_end);
}
//Establish error-storing variables
std::vector bad_tune_freqs;
std::vector no_lock_freqs;
std::vector< std::vector< double > > bad_gain_vals;
std::vector dboard_sensor_names = usrp->get_tx_sensor_names();
std::vector mboard_sensor_names = usrp->get_mboard_sensor_names();
bool has_sensor = (std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked")) != dboard_sensor_names.end();
for(std::vector::iterator f = freqs.begin(); f != freqs.end(); ++f){
//Testing for successful frequency tune
usrp->set_tx_freq(*f);
boost::this_thread::sleep(boost::posix_time::microseconds(long(1000)));
double actual_freq = usrp->get_tx_freq();
if(*f == 0.0){
if(floor(actual_freq + 0.5) == 0.0){
if(verbose) std::cout << boost::format("\nTX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\nTX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl;
}
}
else{
if((*f / actual_freq > 0.9999) and (*f / actual_freq < 1.0001)){
if(verbose) std::cout << boost::format("\nTX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\nTX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl;
bad_tune_freqs.push_back(*f);
}
}
//Testing for successful lock
if(has_sensor){
bool is_locked = false;
for(int i = 0; i < 1000; i++){
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
if(usrp->get_tx_sensor("lo_locked",0).to_bool()){
is_locked = true;
break;
}
}
if(is_locked){
if(verbose) std::cout << boost::format("LO successfully locked at TX frequency %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("LO did not successfully lock at TX frequency %s.") % return_MHz_string(*f) << std::endl;
no_lock_freqs.push_back(*f);
}
}
if(test_gain){
//Testing for successful gain tune
for(std::vector::iterator g = gains.begin(); g != gains.end(); ++g){
usrp->set_tx_gain(*g);
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
double actual_gain = usrp->get_tx_gain();
if(*g == 0.0){
if(actual_gain == 0.0){
if(verbose) std::cout << boost::format("TX gain successfully set to %5.2f at TX frequency %s.") % *g % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("TX gain set to %5.2f instead of %5.2f at TX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl;
std::vector bad_gain_freq;
bad_gain_freq.push_back(*f);
bad_gain_freq.push_back(*g);
bad_gain_vals.push_back(bad_gain_freq);
}
}
else{
if((*g / actual_gain) > 0.9 and (*g / actual_gain) < 1.1){
if(verbose) std::cout << boost::format("TX gain successfully set to %5.2f at TX frequency %s.") % *g % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("TX gain set to %5.2f instead of %5.2f at TX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl;
std::vector bad_gain_freq;
bad_gain_freq.push_back(*f);
bad_gain_freq.push_back(*g);
bad_gain_vals.push_back(bad_gain_freq);
}
}
}
}
}
std::string tx_results = "TX Summary:\n";
if(usrp->get_usrp_tx_info().get("tx_subdev_name") == "XCVR2450 TX"){
tx_results += std::string(str(boost::format("Frequency Range: %s - %s, %s - %s\n") % return_MHz_string(xcvr_freqs.at(0)) % return_MHz_string(xcvr_freqs.at(1)) %
return_MHz_string(xcvr_freqs.at(2)) % return_MHz_string(xcvr_freqs.at(3))));
}
else tx_results += std::string(str(boost::format("Frequency Range: %s - %s\n") % return_MHz_string(freqs.front()) % return_MHz_string(freqs.back())));
if(test_gain) tx_results += std::string(str(boost::format("Gain Range: %5.2f - %5.2f\n") % gains.front() % gains.back()));
if(bad_tune_freqs.empty()) tx_results += "USRP successfully tuned to all frequencies.";
else{
tx_results += "USRP did not successfully tune to the following frequencies: ";
for(std::vector::iterator i = bad_tune_freqs.begin(); i != bad_tune_freqs.end(); ++i){
if(i != bad_tune_freqs.begin()) tx_results += ", ";
tx_results += return_MHz_string(*i);
}
}
if(has_sensor){
tx_results += "\n";
if(no_lock_freqs.empty()) tx_results += "LO successfully locked at all frequencies.";
else{
tx_results += "LO did not lock at the following frequencies: ";
for(std::vector::iterator i = no_lock_freqs.begin(); i != no_lock_freqs.end(); ++i){
if(i != no_lock_freqs.begin()) tx_results += ", ";
tx_results += return_MHz_string(*i);
}
}
}
if(test_gain){
tx_results += "\n";
if(bad_gain_vals.empty()) tx_results += "USRP successfully set all specified gain values at all frequencies.";
else{
tx_results += "USRP did not successfully set gain under the following circumstances:";
for(std::vector< std::vector >::iterator i = bad_gain_vals.begin(); i != bad_gain_vals.end(); ++i){
std::vector bad_pair = *i;
double bad_freq = bad_pair.front();
double bad_gain = bad_pair.back();
tx_results += std::string(str(boost::format("\nFrequency: %s, Gain: %5.2f") % return_MHz_string(bad_freq) % bad_gain));
}
}
}
return tx_results;
}
/************************************************************************
* RX Frequency/Gain Coercion
************************************************************************/
std::string rx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbose){
//Establish frequency range
std::vector freqs;
std::vector xcvr_freqs;
BOOST_FOREACH(const uhd::range_t &range, usrp->get_fe_rx_freq_range()){
double freq_begin = range.start();
double freq_end = range.stop();
if(usrp->get_usrp_rx_info().get("rx_subdev_name") == "XCVR2450 RX"){
xcvr_freqs.push_back(freq_begin);
xcvr_freqs.push_back(freq_end);
}
double freq_step;
if(freq_end - freq_begin > 1000e6) freq_step = 100e6;
else if(freq_end - freq_begin < 300e6) freq_step = 10e6;
else freq_step = 50e6;
double current_freq = freq_begin;
while(current_freq < freq_end){
freqs.push_back(current_freq);
current_freq += freq_step;
}
}
std::vector gains;
if(test_gain){
//Establish gain range
double gain_begin = usrp->get_rx_gain_range().start();
if(gain_begin < 0.0) gain_begin = 0.0;
double gain_end = usrp->get_rx_gain_range().stop();
double current_gain = gain_begin;
while(current_gain < gain_end){
gains.push_back(current_gain);
current_gain++;
}
if(gain_end != gains.back()) gains.push_back(gain_end);
}
//Establish error-storing variables
std::vector bad_tune_freqs;
std::vector no_lock_freqs;
std::vector< std::vector< double > > bad_gain_vals;
std::vector dboard_sensor_names = usrp->get_rx_sensor_names();
std::vector mboard_sensor_names = usrp->get_mboard_sensor_names();
bool has_sensor = (std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked")) != dboard_sensor_names.end();
for(std::vector::iterator f = freqs.begin(); f != freqs.end(); ++f){
//Testing for successful frequency tune
usrp->set_rx_freq(*f);
boost::this_thread::sleep(boost::posix_time::microseconds(long(1000)));
double actual_freq = usrp->get_rx_freq();
if(*f == 0.0){
if(floor(actual_freq + 0.5) == 0.0){
if(verbose) std::cout << boost::format("\nRX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\nRX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl;
}
}
else{
if((*f / actual_freq > 0.9999) and (*f / actual_freq < 1.0001)){
if(verbose) std::cout << boost::format("\nRX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\nRX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl;
bad_tune_freqs.push_back(*f);
}
}
//Testing for successful lock
if(has_sensor){
bool is_locked = false;
for(int i = 0; i < 1000; i++){
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
if(usrp->get_rx_sensor("lo_locked",0).to_bool()){
is_locked = true;
break;
}
}
if(is_locked){
if(verbose) std::cout << boost::format("LO successfully locked at RX frequency %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("LO did not successfully lock at RX frequency %s.") % return_MHz_string(*f) << std::endl;
no_lock_freqs.push_back(*f);
}
}
if(test_gain){
//Testing for successful gain tune
for(std::vector::iterator g = gains.begin(); g != gains.end(); ++g){
usrp->set_rx_gain(*g);
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
double actual_gain = usrp->get_rx_gain();
if(*g == 0.0){
if(actual_gain == 0.0){
if(verbose) std::cout << boost::format("RX gain successfully set to %5.2f at RX frequency %s.") % *g % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("RX gain set to %5.2f instead of %5.2f at RX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl;
std::vector bad_gain_freq;
bad_gain_freq.push_back(*f);
bad_gain_freq.push_back(*g);
bad_gain_vals.push_back(bad_gain_freq);
}
}
else{
if((*g / actual_gain) > 0.9 and (*g / actual_gain) < 1.1){
if(verbose) std::cout << boost::format("RX gain successfully set to %5.2f at RX frequency %s.") % *g % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("RX gain set to %5.2f instead of %5.2f at RX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl;
std::vector bad_gain_freq;
bad_gain_freq.push_back(*f);
bad_gain_freq.push_back(*g);
bad_gain_vals.push_back(bad_gain_freq);
}
}
}
}
}
std::string rx_results = "RX Summary:\n";
if(usrp->get_usrp_rx_info().get("rx_subdev_name") == "XCVR2450 RX"){
rx_results += std::string(str(boost::format("Frequency Range: %s - %s, %s - %s\n") % return_MHz_string(xcvr_freqs.at(0)) % return_MHz_string(xcvr_freqs.at(1)) %
return_MHz_string(xcvr_freqs.at(2)) % return_MHz_string(xcvr_freqs.at(3))));
}
else rx_results += std::string(str(boost::format("Frequency Range: %s - %s\n") % return_MHz_string(freqs.front()) % return_MHz_string(freqs.back())));
if(test_gain) rx_results += std::string(str(boost::format("Gain Range: %5.2f - %5.2f\n") % gains.front() % gains.back()));
if(bad_tune_freqs.empty()) rx_results += "USRP successfully tuned to all frequencies.";
else{
rx_results += "USRP did not successfully tune to the following frequencies: ";
for(std::vector::iterator i = bad_tune_freqs.begin(); i != bad_tune_freqs.end(); ++i){
if(i != bad_tune_freqs.begin()) rx_results += ", ";
rx_results += return_MHz_string(*i);
}
}
if(has_sensor){
rx_results += "\n";
if(no_lock_freqs.empty()) rx_results += "LO successfully locked at all frequencies.";
else{
rx_results += "LO did not successfully lock at the following frequencies: ";
for(std::vector::iterator i = no_lock_freqs.begin(); i != no_lock_freqs.end(); ++i){
if( i != no_lock_freqs.begin()) rx_results += ", ";
rx_results += return_MHz_string(*i);
}
}
}
if(test_gain){
rx_results += "\n";
if(bad_gain_vals.empty()) rx_results += "USRP successfully set all specified gain values at all frequencies.";
else{
rx_results += "USRP did not successfully set gain under the following circumstances:";
for(std::vector< std::vector >::iterator i = bad_gain_vals.begin(); i != bad_gain_vals.end(); ++i){
std::vector bad_pair = *i;
double bad_freq = bad_pair.front();
double bad_gain = bad_pair.back();
rx_results += std::string(str(boost::format("\nFrequency: %s, Gain: %5.2f") % return_MHz_string(bad_freq) % bad_gain));
}
}
}
return rx_results;
}
/************************************************************************
* Initial Setup
************************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
//Variables
std::string args;
double gain_step;
std::string ref;
std::string tx_results;
std::string rx_results;
std::string usrp_config;
//Set up the program options
po::options_description desc("Allowed Options");
desc.add_options()
("help", "help message")
("args", po::value(&args)->default_value(""), "Specify the UHD device")
("gain_step", po::value(&gain_step)->default_value(1.0), "Specify the delta between gain scans")
("tx", "Specify to test TX frequency and gain coercion")
("rx", "Specify to test RX frequency and gain coercion")
("ref", po::value(&ref)->default_value("internal"), "Waveform type: internal, external, or mimo")
("no_tx_gain", "Do not test TX gain")
("no_rx_gain", "Do not test RX gain")
("verbose", "Output every frequency and gain check instead of just final summary")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//Create a USRP device
std::cout << std::endl;
uhd::device_addrs_t device_addrs = uhd::device::find(args);
std::cout << boost::format("Creating the USRP device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << std::endl << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
usrp->set_tx_rate(1e6);
usrp->set_rx_rate(1e6);
//Boolean variables based on command line input
bool test_tx = vm.count("tx") > 0;
bool test_rx = vm.count("rx") > 0;
bool test_tx_gain = !(vm.count("no_tx_gain") > 0) and (usrp->get_tx_gain_range().stop() > 0);
bool test_rx_gain = !(vm.count("no_rx_gain") > 0) and (usrp->get_rx_gain_range().stop() > 0);
bool verbose = vm.count("verbose") > 0;
//Help messages, errors
if(vm.count("help") > 0){
std::cout << "UHD Daughterboard Coercion Test\n"
"This program tests your USRP daughterboard(s) to\n"
"make sure that they can successfully tune to all\n"
"frequencies and gains in their advertised ranges.\n\n";
std::cout << desc << std::endl;
return ~0;
}
if(ref != "internal" and ref != "external" and ref != "mimo"){
std::cout << desc << std::endl;
std::cout << "REF must equal internal, external, or mimo." << std::endl;
return ~0;
}
if(vm.count("tx") + vm.count("rx") == 0){
std::cout << desc << std::endl;
std::cout << "Specify --tx to test for TX frequency coercion\n"
"Specify --rx to test for RX frequency coercion\n";
return ~0;
}
if(test_rx and usrp->get_usrp_rx_info().get("rx_id") == "Basic RX (0x0001)"){
std::cout << desc << std::endl;
std::cout << "This test does not work with the Basic RX daughterboard." << std::endl;
return ~0;
}
else if(test_rx and usrp->get_usrp_rx_info().get("rx_id") == "Unknown (0xffff)"){
std::cout << desc << std::endl;
std::cout << "This daughterboard is unrecognized, or there is no RX daughterboard." << std::endl;
return ~0;
}
if(test_tx and usrp->get_usrp_tx_info().get("tx_id") == "Basic TX (0x0000)"){
std::cout << desc << std::endl;
std::cout << "This test does not work with the Basic TX daughterboard." << std::endl;
return ~0;
}
else if(test_tx and usrp->get_usrp_tx_info().get("tx_id") == "Unknown (0xffff)"){
std::cout << desc << std::endl;
std::cout << "This daughterboard is unrecognized, or there is no TX daughterboard." << std::endl;
return ~0;
}
//Setting clock source
usrp->set_clock_source(ref);
boost::this_thread::sleep(boost::posix_time::seconds(1));
std::vector sensor_names = usrp->get_mboard_sensor_names(0);
if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) {
uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked",0);
std::cout << boost::format("Checking MIMO lock: %s ...") % mimo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) {
uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked",0);
std::cout << boost::format("Checking REF lock: %s ...") % ref_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
usrp_config = return_USRP_config_string(usrp, test_tx, test_rx);
if(test_tx) tx_results = tx_test(usrp, test_tx_gain, verbose);
if(test_rx) rx_results = rx_test(usrp, test_rx_gain, verbose);
if(verbose) std::cout << std::endl;
std::cout << usrp_config << std::endl << std::endl;
if(test_tx) std::cout << tx_results << std::endl;
if(test_tx and test_rx) std::cout << std::endl;
if(test_rx) std::cout << rx_results << std::endl;
return EXIT_SUCCESS;
}