// // Copyright 2012,2014,20160 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include static const double SAMP_RATE = 1e6; namespace po = boost::program_options; typedef std::pair double_pair; // BOOST_FOREACH doesn't like commas typedef std::vector> pair_vector; /************************************************************************ * Misc functions ************************************************************************/ std::string MHz_str(double freq) { return std::string(str(boost::format("%5.2f MHz") % (freq / 1e6))); } std::string return_usrp_config_string( uhd::usrp::multi_usrp::sptr usrp, int chan, bool test_tx, bool test_rx, bool is_b2xx) { uhd::dict tx_info = usrp->get_usrp_tx_info(chan); uhd::dict rx_info = usrp->get_usrp_rx_info(chan); std::string info_string; std::string mboard_id, mboard_serial; std::string tx_serial, tx_subdev_name, tx_subdev_spec; std::string rx_serial, rx_subdev_name, rx_subdev_spec; mboard_id = tx_info.get("mboard_id"); if (tx_info.get("mboard_serial") == "") mboard_serial = "no serial"; else mboard_serial = tx_info.get("mboard_serial"); info_string = str(boost::format("Motherboard: %s (%s)\n") % mboard_id % mboard_serial); if (test_tx) { if (tx_info.get("tx_serial") == "") tx_serial = "no serial"; else tx_serial = tx_info.get("tx_serial"); tx_subdev_name = tx_info.get("tx_subdev_name"); tx_subdev_spec = tx_info.get("tx_subdev_spec"); info_string += is_b2xx ? str(boost::format("TX: %s (%s)") % tx_subdev_name % tx_subdev_spec) : str(boost::format("TX: %s (%s, %s)") % tx_subdev_name % tx_serial % tx_subdev_spec); } if (test_tx and test_rx) info_string += "\n"; if (test_rx) { if (rx_info.get("rx_serial") == "") rx_serial = "no serial"; else rx_serial = rx_info.get("rx_serial"); rx_subdev_name = rx_info.get("rx_subdev_name"); rx_subdev_spec = rx_info.get("rx_subdev_spec"); info_string += is_b2xx ? str(boost::format("RX: %s (%s)") % rx_subdev_name % rx_subdev_spec) : str(boost::format("RX: %s (%s, %s)") % rx_subdev_name % rx_serial % rx_subdev_spec); } return info_string; } std::string coercion_test(uhd::usrp::multi_usrp::sptr usrp, std::string type, int chan, bool test_gain, double freq_step, double gain_step, bool verbose) { // Getting USRP info uhd::dict usrp_info = (type == "TX") ? usrp->get_usrp_tx_info(chan) : usrp->get_usrp_rx_info(chan); std::string subdev_name = (type == "TX") ? usrp_info.get("tx_subdev_name") : usrp_info.get("rx_subdev_name"); std::string subdev_spec = (type == "TX") ? usrp_info.get("tx_subdev_spec") : usrp_info.get("rx_subdev_spec"); // Establish frequency range std::vector freqs; std::vector xcvr_freqs; // XCVR2450 has two ranges uhd::freq_range_t freq_ranges = (type == "TX") ? usrp->get_fe_tx_freq_range(chan) : usrp->get_fe_rx_freq_range(chan); std::cout << boost::format("\nTesting %s coercion...") % type << std::endl; for (const uhd::range_t& range : freq_ranges) { double freq_begin = range.start(); double freq_end = range.stop(); if (subdev_name.find("XCVR2450") == 0) { xcvr_freqs.push_back(freq_begin); xcvr_freqs.push_back(freq_end); } double current_freq = freq_begin; while (current_freq < freq_end) { freqs.push_back(current_freq); current_freq += freq_step; } if (freq_end != *freqs.end()) freqs.push_back(freq_end); } std::vector gains; if (test_gain) { // Establish gain range uhd::gain_range_t gain_range = (type == "TX") ? usrp->get_tx_gain_range(chan) : usrp->get_rx_gain_range(chan); double gain_begin = gain_range.start(); // Start gain at 0 if range begins negative if (gain_begin < 0.0) gain_begin = 0.0; double gain_end = gain_range.stop(); double current_gain = gain_begin; while (current_gain < gain_end) { gains.push_back(current_gain); current_gain += gain_step; } gains.push_back(gain_end); } // Establish error-storing variables std::vector bad_tune_freqs; std::vector no_lock_freqs; pair_vector bad_gain_vals; // Sensor names std::vector dboard_sensor_names = (type == "TX") ? usrp->get_tx_sensor_names(chan) : usrp->get_rx_sensor_names(chan); std::vector mboard_sensor_names = usrp->get_mboard_sensor_names(); bool has_sensor = (std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked")) != dboard_sensor_names.end(); for (double freq : freqs) { // Testing for successful frequency tune if (type == "TX") usrp->set_tx_freq(freq, chan); else usrp->set_rx_freq(freq, chan); std::this_thread::sleep_for(std::chrono::microseconds(long(1000))); double actual_freq = (type == "TX") ? usrp->get_tx_freq(chan) : usrp->get_rx_freq(chan); if (freq == 0.0) { if (floor(actual_freq + 0.5) == 0.0) { if (verbose) std::cout << boost::format("\n%s frequency successfully tuned to %s.") % type % MHz_str(freq) << std::endl; } else { if (verbose) std::cout << boost::format( "\n%s frequency tuned to %s instead of %s.") % type % MHz_str(actual_freq) % MHz_str(freq) << std::endl; bad_tune_freqs.push_back(freq); } } else { if ((freq / actual_freq > 0.9999) and (freq / actual_freq < 1.0001)) { if (verbose) std::cout << boost::format("\n%s frequency successfully tuned to %s.") % type % MHz_str(freq) << std::endl; } else { if (verbose) std::cout << boost::format( "\n%s frequency tuned to %s instead of %s.") % type % MHz_str(actual_freq) % MHz_str(freq) << std::endl; bad_tune_freqs.push_back(freq); } } // Testing for successful lock if (has_sensor) { bool is_locked = false; for (int i = 0; i < 1000; i++) { is_locked = (type == "TX") ? usrp->get_tx_sensor("lo_locked", 0).to_bool() : usrp->get_rx_sensor("lo_locked", 0).to_bool(); if (is_locked) { break; } std::this_thread::sleep_for(std::chrono::microseconds(1000)); } if (is_locked) { if (verbose) std::cout << boost::format( "LO successfully locked at %s frequency %s.") % type % MHz_str(freq) << std::endl; } else { if (verbose) std::cout << boost::format( "LO did not successfully lock at %s frequency %s.") % type % MHz_str(freq) << std::endl; no_lock_freqs.push_back(freq); } } if (test_gain) { // Testing for successful gain tune for (double gain : gains) { if (type == "TX") usrp->set_tx_gain(gain, chan); else usrp->set_rx_gain(gain, chan); std::this_thread::sleep_for(std::chrono::microseconds(1000)); double actual_gain = (type == "TX") ? usrp->get_tx_gain(chan) : usrp->get_rx_gain(chan); if (gain == 0.0) { if (actual_gain == 0.0) { if (verbose) std::cout << boost::format("Gain successfully set to %5.2f " "at %s frequency %s.") % gain % type % MHz_str(freq) << std::endl; } else { if (verbose) std::cout << boost::format("Gain set to %5.2f instead of " "%5.2f at %s frequency %s.") % actual_gain % gain % type % MHz_str(freq) << std::endl; bad_gain_vals.push_back(std::make_pair(freq, gain)); } } else { if ((gain / actual_gain) > 0.9999 and (gain / actual_gain) < 1.0001) { if (verbose) std::cout << boost::format("Gain successfully set to %5.2f " "at %s frequency %s.") % gain % type % MHz_str(freq) << std::endl; } else { if (verbose) std::cout << boost::format("Gain set to %5.2f instead of " "%5.2f at %s frequency %s.") % actual_gain % gain % type % MHz_str(freq) << std::endl; bad_gain_vals.push_back(std::make_pair(freq, gain)); } } } } } std::string results = str(boost::format("%s Summary:\n") % type); if (subdev_name.find("XCVR2450") == 0) { results += str(boost::format("Frequency Range: %s - %s, %s - %s\n") % MHz_str(xcvr_freqs[0]) % MHz_str(xcvr_freqs[1]) % MHz_str(xcvr_freqs[2]) % MHz_str(xcvr_freqs[3])); } else results += str(boost::format("Frequency Range: %s - %s (Step: %s)\n") % MHz_str(freqs.front()) % MHz_str(freqs.back()) % MHz_str(freq_step)); if (test_gain) results += str(boost::format("Gain Range:%5.2f - %5.2f (Step:%5.2f)\n") % gains.front() % gains.back() % gain_step); if (bad_tune_freqs.empty()) results += "USRP successfully tuned to all frequencies."; else if (bad_tune_freqs.size() > 10 and not verbose) { // If tuning fails at many values, don't print them all results += str(boost::format("USRP did not successfully tune at %d frequencies.") % bad_tune_freqs.size()); } else { results += "USRP did not successfully tune to the following frequencies: "; for (double bad_freq : bad_tune_freqs) { if (bad_freq != *bad_tune_freqs.begin()) results += ", "; results += MHz_str(bad_freq); } } if (has_sensor) { results += "\n"; if (no_lock_freqs.empty()) results += "LO successfully locked at all frequencies."; else if (no_lock_freqs.size() > 10 and not verbose) { // If locking fails at many values, don't print them all results += str(boost::format("USRP did not successfully lock at %d frequencies.") % no_lock_freqs.size()); } else { results += "LO did not lock at the following frequencies: "; for (double bad_freq : no_lock_freqs) { if (bad_freq != *no_lock_freqs.begin()) results += ", "; results += MHz_str(bad_freq); } } } if (test_gain) { results += "\n"; if (bad_gain_vals.empty()) results += "USRP successfully set all specified gain values at all frequencies."; else if (bad_gain_vals.size() > 10 and not verbose) { // If gain fails at many values, don't print them all results += str(boost::format("USRP did not successfully set gain at %d values.") % bad_gain_vals.size()); } else { results += "USRP did not successfully set gain under the following circumstances:"; for (double_pair bad_pair : bad_gain_vals) { double bad_freq = bad_pair.first; double bad_gain = bad_pair.second; results += str(boost::format("\nFrequency: %s, Gain: %5.2f") % MHz_str(bad_freq) % bad_gain); } } } return results; } /************************************************************************ * Initial Setup ************************************************************************/ int UHD_SAFE_MAIN(int argc, char* argv[]) { // Variables int chan; std::string args; double freq_step, gain_step; std::string ref; std::string tx_results; std::string rx_results; std::string usrp_config; // Set up the program options po::options_description desc("Allowed Options"); // clang-format off desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "Specify the UHD device") ("chan", po::value(&chan)->default_value(0), "Specify multi_usrp channel") ("freq-step", po::value(&freq_step)->default_value(100e6), "Specify the delta between frequency scans") ("gain-step", po::value(&gain_step)->default_value(1.0), "Specify the delta between gain scans") ("tx", "Specify to test TX frequency and gain coercion") ("rx", "Specify to test RX frequency and gain coercion") ("ref", po::value(&ref)->default_value("internal"), "Waveform type: internal, external, or mimo") ("no-tx-gain", "Do not test TX gain") ("no-rx-gain", "Do not test RX gain") ("verbose", "Output every frequency and gain check instead of just final summary") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // Help messages, errors if (vm.count("help") > 0) { std::cout << "UHD Daughterboard Coercion Test\n" "This program tests your USRP daughterboard(s) to\n" "make sure that they can successfully tune to all\n" "frequencies and gains in their advertised ranges.\n\n"; std::cout << desc << std::endl; return EXIT_SUCCESS; } if (vm.count("tx") + vm.count("rx") == 0) { std::cout << desc << std::endl; std::cout << "Specify --tx to test for TX frequency coercion\n" "Specify --rx to test for RX frequency coercion\n"; return EXIT_FAILURE; } // Create a USRP device std::cout << std::endl; uhd::device_addrs_t device_addrs = uhd::device::find(args, uhd::device::USRP); std::cout << boost::format("Creating the USRP device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); std::cout << std::endl << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; usrp->set_tx_rate(SAMP_RATE); usrp->set_rx_rate(SAMP_RATE); // Boolean variables based on command line input bool test_tx = vm.count("tx") > 0; bool test_rx = vm.count("rx") > 0; bool test_tx_gain = !(vm.count("no-tx-gain") > 0) and (usrp->get_tx_gain_range().stop() > 0); bool test_rx_gain = !(vm.count("no-rx-gain") > 0) and (usrp->get_rx_gain_range().stop() > 0); bool verbose = vm.count("verbose") > 0; if (ref != "internal" and ref != "external" and ref != "mimo") { std::cout << desc << std::endl; std::cout << "REF must equal internal, external, or mimo." << std::endl; return EXIT_FAILURE; } // Use TX mboard ID to determine if this is a B2xx, will still return value if there // is no TX std::string tx_mboard_id = usrp->get_usrp_tx_info(chan).get("mboard_id"); bool is_b2xx = (tx_mboard_id == "B200" or tx_mboard_id == "B210"); // Don't perform daughterboard validity checks for B200/B210 if ((not is_b2xx) and test_tx) { std::string tx_dboard_name = usrp->get_usrp_tx_info(chan).get("tx_id"); if (tx_dboard_name == "Basic TX (0x0000)" or tx_dboard_name == "LF TX (0x000e)") { std::cout << desc << std::endl; std::cout << boost::format( "This test does not work with the %s daughterboard.") % tx_dboard_name << std::endl; return EXIT_FAILURE; } else if (tx_dboard_name == "Unknown (0xffff)") { std::cout << desc << std::endl; std::cout << "This daughterboard is unrecognized, or there is no TX daughterboard." << std::endl; return EXIT_FAILURE; } } // Don't perform daughterboard validity checks for B200/B210 if ((not is_b2xx) and test_rx) { std::string rx_dboard_name = usrp->get_usrp_rx_info(chan).get("rx_id"); if (rx_dboard_name == "Basic RX (0x0001)" or rx_dboard_name == "LF RX (0x000f)") { std::cout << desc << std::endl; std::cout << boost::format( "This test does not work with the %s daughterboard.") % rx_dboard_name << std::endl; return EXIT_FAILURE; } else if (rx_dboard_name == "Unknown (0xffff)") { std::cout << desc << std::endl; std::cout << "This daughterboard is unrecognized, or there is no RX daughterboard." << std::endl; return EXIT_FAILURE; } } // Setting clock source usrp->set_clock_source(ref); std::this_thread::sleep_for(std::chrono::seconds(1)); std::vector sensor_names = usrp->get_mboard_sensor_names(0); if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) { uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked", 0); std::cout << boost::format("Checking MIMO lock: %s ...") % mimo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(mimo_locked.to_bool()); } if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) { uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked", 0); std::cout << boost::format("Checking REF lock: %s ...") % ref_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(ref_locked.to_bool()); } usrp_config = return_usrp_config_string(usrp, chan, test_tx, test_rx, is_b2xx); if (test_tx) tx_results = coercion_test(usrp, "TX", chan, test_tx_gain, freq_step, gain_step, verbose); if (test_rx) rx_results = coercion_test(usrp, "RX", chan, test_rx_gain, freq_step, gain_step, verbose); std::cout << std::endl << usrp_config << std::endl << std::endl; if (test_tx) std::cout << tx_results << std::endl; if (test_tx and test_rx) std::cout << std::endl; if (test_rx) std::cout << rx_results << std::endl; return EXIT_SUCCESS; }