// // Copyright 2010-2012,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; int UHD_SAFE_MAIN(int argc, char* argv[]) { uhd::set_thread_priority_safe(); // variables to be set by po std::string args, file, ant, subdev, ref; size_t total_num_samps; double rate, freq, gain, bw; std::string addr, port; // setup the program options po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "multi uhd device address args") ("nsamps", po::value(&total_num_samps)->default_value(1000), "total number of samples to receive") ("rate", po::value(&rate)->default_value(100e6/16), "rate of incoming samples") ("freq", po::value(&freq)->default_value(0), "rf center frequency in Hz") ("gain", po::value(&gain)->default_value(0), "gain for the RF chain") ("ant", po::value(&ant), "antenna selection") ("subdev", po::value(&subdev), "subdevice specification") ("bw", po::value(&bw), "analog frontend filter bandwidth in Hz") ("port", po::value(&port)->default_value("7124"), "server udp port") ("addr", po::value(&addr)->default_value("192.168.1.10"), "resolvable server address") ("ref", po::value(&ref)->default_value("internal"), "reference source (internal, external, mimo)") ("int-n", "tune USRP with integer-N tuning") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << boost::format("UHD RX to UDP %s") % desc << std::endl; return ~0; } // create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; // Lock mboard clocks usrp->set_clock_source(ref); // always select the subdevice first, the channel mapping affects the other settings if (vm.count("subdev")) { usrp->set_rx_subdev_spec(subdev); } // set the rx sample rate std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate / 1e6) << std::endl; usrp->set_rx_rate(rate); std::cout << boost::format("Actual RX Rate: %f Msps...") % (usrp->get_rx_rate() / 1e6) << std::endl << std::endl; // set the rx center frequency std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq / 1e6) << std::endl; uhd::tune_request_t tune_request(freq); if (vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer"); usrp->set_rx_freq(tune_request); std::cout << boost::format("Actual RX Freq: %f MHz...") % (usrp->get_rx_freq() / 1e6) << std::endl << std::endl; // set the rx rf gain std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl; usrp->set_rx_gain(gain); std::cout << boost::format("Actual RX Gain: %f dB...") % usrp->get_rx_gain() << std::endl << std::endl; // set the analog frontend filter bandwidth if (vm.count("bw")) { std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (bw / 1e6) << std::endl; usrp->set_rx_bandwidth(bw); std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % (usrp->get_rx_bandwidth() / 1e6) << std::endl << std::endl; } // set the antenna if (vm.count("ant")) usrp->set_rx_antenna(ant); std::this_thread::sleep_for(std::chrono::seconds(1)); // allow for some setup time // Check Ref and LO Lock detect std::vector sensor_names; sensor_names = usrp->get_rx_sensor_names(0); if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end()) { uhd::sensor_value_t lo_locked = usrp->get_rx_sensor("lo_locked", 0); std::cout << boost::format("Checking RX: %s ...") % lo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(lo_locked.to_bool()); } sensor_names = usrp->get_mboard_sensor_names(0); if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) { uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked", 0); std::cout << boost::format("Checking RX: %s ...") % mimo_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(mimo_locked.to_bool()); } if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) { uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked", 0); std::cout << boost::format("Checking RX: %s ...") % ref_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(ref_locked.to_bool()); } // create a receive streamer uhd::stream_args_t stream_args("fc32"); // complex floats uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); // setup streaming uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); stream_cmd.num_samps = total_num_samps; stream_cmd.stream_now = true; rx_stream->issue_stream_cmd(stream_cmd); // loop until total number of samples reached size_t num_acc_samps = 0; // number of accumulated samples uhd::rx_metadata_t md; std::vector> buff(rx_stream->get_max_num_samps()); uhd::transport::udp_simple::sptr udp_xport = uhd::transport::udp_simple::make_connected(addr, port); while (num_acc_samps < total_num_samps) { size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md); // handle the error codes switch (md.error_code) { case uhd::rx_metadata_t::ERROR_CODE_NONE: break; case uhd::rx_metadata_t::ERROR_CODE_TIMEOUT: if (num_acc_samps == 0) continue; std::cout << boost::format("Got timeout before all samples received, " "possible packet loss, exiting loop...") << std::endl; goto done_loop; default: std::cout << boost::format("Got error code 0x%x, exiting loop...") % md.error_code << std::endl; goto done_loop; } // send complex single precision floating point samples over udp udp_xport->send(boost::asio::buffer(buff, num_rx_samps * sizeof(buff.front()))); num_acc_samps += num_rx_samps; } done_loop: // finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }