//
// Copyright 2010-2012,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace po = boost::program_options;
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args, file, ant, subdev, ref;
size_t total_num_samps;
double rate, freq, gain, bw;
std::string addr, port;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value(&args)->default_value(""), "multi uhd device address args")
("nsamps", po::value(&total_num_samps)->default_value(1000), "total number of samples to receive")
("rate", po::value(&rate)->default_value(100e6/16), "rate of incoming samples")
("freq", po::value(&freq)->default_value(0), "rf center frequency in Hz")
("gain", po::value(&gain)->default_value(0), "gain for the RF chain")
("ant", po::value(&ant), "daughterboard antenna selection")
("subdev", po::value(&subdev), "daughterboard subdevice specification")
("bw", po::value(&bw), "daughterboard IF filter bandwidth in Hz")
("port", po::value(&port)->default_value("7124"), "server udp port")
("addr", po::value(&addr)->default_value("192.168.1.10"), "resolvable server address")
("ref", po::value(&ref)->default_value("internal"), "waveform type (internal, external, mimo)")
("int-n", "tune USRP with integer-N tuning")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("UHD RX to UDP %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
//Lock mboard clocks
usrp->set_clock_source(ref);
//set the rx sample rate
std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate/1e6) << std::endl;
usrp->set_rx_rate(rate);
std::cout << boost::format("Actual RX Rate: %f Msps...") % (usrp->get_rx_rate()/1e6) << std::endl << std::endl;
//set the rx center frequency
std::cout << boost::format("Setting RX Freq: %f Mhz...") % (freq/1e6) << std::endl;
uhd::tune_request_t tune_request(freq);
if(vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=int-n");
usrp->set_rx_freq(tune_request);
std::cout << boost::format("Actual RX Freq: %f Mhz...") % (usrp->get_rx_freq()/1e6) << std::endl << std::endl;
//set the rx rf gain
std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl;
usrp->set_rx_gain(gain);
std::cout << boost::format("Actual RX Gain: %f dB...") % usrp->get_rx_gain() << std::endl << std::endl;
//set the IF filter bandwidth
if (vm.count("bw")){
std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % bw << std::endl;
usrp->set_rx_bandwidth(bw);
std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % usrp->get_rx_bandwidth() << std::endl << std::endl;
}
//set the antenna
if (vm.count("ant")) usrp->set_rx_antenna(ant);
boost::this_thread::sleep(boost::posix_time::seconds(1)); //allow for some setup time
//Check Ref and LO Lock detect
std::vector sensor_names;
sensor_names = usrp->get_rx_sensor_names(0);
if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end()) {
uhd::sensor_value_t lo_locked = usrp->get_rx_sensor("lo_locked",0);
std::cout << boost::format("Checking RX: %s ...") % lo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(lo_locked.to_bool());
}
sensor_names = usrp->get_mboard_sensor_names(0);
if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) {
uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked",0);
std::cout << boost::format("Checking RX: %s ...") % mimo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) {
uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked",0);
std::cout << boost::format("Checking RX: %s ...") % ref_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
//create a receive streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
//setup streaming
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = total_num_samps;
stream_cmd.stream_now = true;
rx_stream->issue_stream_cmd(stream_cmd);
//loop until total number of samples reached
size_t num_acc_samps = 0; //number of accumulated samples
uhd::rx_metadata_t md;
std::vector > buff(rx_stream->get_max_num_samps());
uhd::transport::udp_simple::sptr udp_xport = uhd::transport::udp_simple::make_connected(addr, port);
while(num_acc_samps < total_num_samps){
size_t num_rx_samps = rx_stream->recv(
&buff.front(), buff.size(), md
);
//handle the error codes
switch(md.error_code){
case uhd::rx_metadata_t::ERROR_CODE_NONE:
break;
case uhd::rx_metadata_t::ERROR_CODE_TIMEOUT:
if (num_acc_samps == 0) continue;
std::cout << boost::format(
"Got timeout before all samples received, possible packet loss, exiting loop..."
) << std::endl;
goto done_loop;
default:
std::cout << boost::format(
"Got error code 0x%x, exiting loop..."
) % md.error_code << std::endl;
goto done_loop;
}
//send complex single precision floating point samples over udp
udp_xport->send(boost::asio::buffer(buff, num_rx_samps*sizeof(buff.front())));
num_acc_samps += num_rx_samps;
} done_loop:
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}