// // Copyright 2014-2016 Ettus Research LLC // Copyright 2019 Ettus Research, a National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; constexpr int64_t UPDATE_INTERVAL = 1; // 1 second update interval for BW summary static bool stop_signal_called = false; void sig_int_handler(int) { stop_signal_called = true; } template void recv_to_file(uhd::rx_streamer::sptr rx_stream, const std::string& file, const size_t samps_per_buff, const double rx_rate, const unsigned long long num_requested_samples, double time_requested = 0.0, bool bw_summary = false, bool stats = false, bool enable_size_map = false, bool continue_on_bad_packet = false) { unsigned long long num_total_samps = 0; uhd::rx_metadata_t md; std::vector buff(samps_per_buff); std::ofstream outfile; if (not file.empty()) { outfile.open(file.c_str(), std::ofstream::binary); } bool overflow_message = true; // setup streaming uhd::stream_cmd_t stream_cmd((num_requested_samples == 0) ? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS : uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); stream_cmd.num_samps = size_t(num_requested_samples); stream_cmd.stream_now = true; stream_cmd.time_spec = uhd::time_spec_t(); std::cout << "Issuing stream cmd" << std::endl; rx_stream->issue_stream_cmd(stream_cmd); const auto start_time = std::chrono::steady_clock::now(); const auto stop_time = start_time + std::chrono::milliseconds(int64_t(1000 * time_requested)); // Track time and samps between updating the BW summary auto last_update = start_time; unsigned long long last_update_samps = 0; typedef std::map SizeMap; SizeMap mapSizes; // Run this loop until either time expired (if a duration was given), until // the requested number of samples were collected (if such a number was // given), or until Ctrl-C was pressed. while (not stop_signal_called and (num_requested_samples != num_total_samps or num_requested_samples == 0) and (time_requested == 0.0 or std::chrono::steady_clock::now() <= stop_time)) { const auto now = std::chrono::steady_clock::now(); size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md, 3.0, enable_size_map); if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) { std::cout << "Timeout while streaming" << std::endl; break; } if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) { if (overflow_message) { overflow_message = false; std::cerr << "Got an overflow indication. Please consider the following:\n" " Your write medium must sustain a rate of " << (rx_rate * sizeof(samp_type) / 1e6) << "MB/s.\n" " Dropped samples will not be written to the file.\n" " Please modify this example for your purposes.\n" " This message will not appear again.\n"; } continue; } if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) { std::string error = std::string("Receiver error: ") + md.strerror(); if (continue_on_bad_packet) { std::cerr << error << std::endl; continue; } else throw std::runtime_error(error); } if (enable_size_map) { SizeMap::iterator it = mapSizes.find(num_rx_samps); if (it == mapSizes.end()) mapSizes[num_rx_samps] = 0; mapSizes[num_rx_samps] += 1; } num_total_samps += num_rx_samps; if (outfile.is_open()) { outfile.write((const char*)&buff.front(), num_rx_samps * sizeof(samp_type)); } if (bw_summary) { last_update_samps += num_rx_samps; const auto time_since_last_update = now - last_update; if (time_since_last_update > std::chrono::seconds(UPDATE_INTERVAL)) { const double time_since_last_update_s = std::chrono::duration(time_since_last_update).count(); const double rate = double(last_update_samps) / time_since_last_update_s; std::cout << "\t" << (rate / 1e6) << " MSps" << std::endl; last_update_samps = 0; last_update = now; } } } const auto actual_stop_time = std::chrono::steady_clock::now(); stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS; std::cout << "Issuing stop stream cmd" << std::endl; rx_stream->issue_stream_cmd(stream_cmd); // Run recv until nothing is left int num_post_samps = 0; do { num_post_samps = rx_stream->recv(&buff.front(), buff.size(), md, 3.0); } while (num_post_samps and md.error_code == uhd::rx_metadata_t::ERROR_CODE_NONE); if (outfile.is_open()) outfile.close(); if (stats) { std::cout << std::endl; const double actual_duration_seconds = std::chrono::duration(actual_stop_time - start_time).count(); std::cout << "Received " << num_total_samps << " samples in " << actual_duration_seconds << " seconds" << std::endl; const double rate = (double)num_total_samps / actual_duration_seconds; std::cout << (rate / 1e6) << " MSps" << std::endl; if (enable_size_map) { std::cout << std::endl; std::cout << "Packet size map (bytes: count)" << std::endl; for (SizeMap::iterator it = mapSizes.begin(); it != mapSizes.end(); it++) std::cout << it->first << ":\t" << it->second << std::endl; } } } typedef std::function get_sensor_fn_t; bool check_locked_sensor(std::vector sensor_names, const char* sensor_name, get_sensor_fn_t get_sensor_fn, double setup_time) { if (std::find(sensor_names.begin(), sensor_names.end(), sensor_name) == sensor_names.end()) return false; auto setup_timeout = std::chrono::steady_clock::now() + std::chrono::milliseconds(int64_t(setup_time * 1000)); bool lock_detected = false; std::cout << "Waiting for \"" << sensor_name << "\": "; std::cout.flush(); while (true) { if (lock_detected and (std::chrono::steady_clock::now() > setup_timeout)) { std::cout << " locked." << std::endl; break; } if (get_sensor_fn(sensor_name).to_bool()) { std::cout << "+"; std::cout.flush(); lock_detected = true; } else { if (std::chrono::steady_clock::now() > setup_timeout) { std::cout << std::endl; throw std::runtime_error( std::string("timed out waiting for consecutive locks on sensor \"") + sensor_name + "\""); } std::cout << "_"; std::cout.flush(); } std::this_thread::sleep_for(std::chrono::milliseconds(100)); } std::cout << std::endl; return true; } int UHD_SAFE_MAIN(int argc, char* argv[]) { // variables to be set by po std::string args, file, format, ant, subdev, ref, wirefmt, streamargs, block_id, block_props; size_t total_num_samps, spb, spp, radio_id, radio_chan, block_port; double rate, freq, gain, bw, total_time, setup_time; // setup the program options po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("file", po::value(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to") ("format", po::value(&format)->default_value("sc16"), "File sample format: sc16, fc32, or fc64") ("duration", po::value(&total_time)->default_value(0), "total number of seconds to receive") ("nsamps", po::value(&total_num_samps)->default_value(0), "total number of samples to receive") ("spb", po::value(&spb)->default_value(10000), "samples per buffer") ("spp", po::value(&spp), "samples per packet (on FPGA and wire)") ("streamargs", po::value(&streamargs)->default_value(""), "stream args") ("progress", "periodically display short-term bandwidth") ("stats", "show average bandwidth on exit") ("sizemap", "track packet size and display breakdown on exit") ("null", "run without writing to file") ("continue", "don't abort on a bad packet") ("args", po::value(&args)->default_value(""), "USRP device address args") ("setup", po::value(&setup_time)->default_value(1.0), "seconds of setup time") ("radio-id", po::value(&radio_id)->default_value(0), "Radio ID to use (0 or 1).") ("radio-chan", po::value(&radio_chan)->default_value(0), "Radio channel") ("rate", po::value(&rate)->default_value(1e6), "RX rate of the radio block") ("freq", po::value(&freq)->default_value(0.0), "RF center frequency in Hz") ("gain", po::value(&gain), "gain for the RF chain") ("ant", po::value(&ant), "antenna selection") ("bw", po::value(&bw), "analog frontend filter bandwidth in Hz") ("ref", po::value(&ref), "reference source (internal, external, mimo)") ("skip-lo", "skip checking LO lock status") ("int-n", "tune USRP with integer-N tuning") ("block-id", po::value(&block_id), "If block ID is specified, this block is inserted between radio and host.") ("block-port", po::value(&block_port)->default_value(0), "If block ID is specified, this block is inserted between radio and host.") ("block-props", po::value(&block_props), "These are passed straight to the block as properties (see set_properties()).") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << "UHD/RFNoC RX samples to file " << desc << std::endl; std::cout << std::endl << "This application streams data from a single channel of a USRP " "device to a file.\n" << std::endl; return ~0; } bool bw_summary = vm.count("progress") > 0; bool stats = vm.count("stats") > 0; if (vm.count("null") > 0) { file = ""; } bool enable_size_map = vm.count("sizemap") > 0; bool continue_on_bad_packet = vm.count("continue") > 0; if (enable_size_map) { std::cout << "Packet size tracking enabled - will only recv one packet at a time!" << std::endl; } if (format != "sc16" and format != "fc32" and format != "fc64") { std::cout << "Invalid sample format: " << format << std::endl; return EXIT_FAILURE; } /************************************************************************ * Create device and block controls ***********************************************************************/ std::cout << std::endl; std::cout << "Creating the RFNoC graph with args: " << args << std::endl; auto graph = uhd::rfnoc::rfnoc_graph::make(args); // Create handle for radio object uhd::rfnoc::block_id_t radio_ctrl_id(0, "Radio", radio_id); // This next line will fail if the radio is not actually available auto radio_ctrl = graph->get_block(radio_ctrl_id); std::cout << "Using radio " << radio_id << ", channel " << radio_chan << std::endl; uhd::rfnoc::block_id_t last_block_in_chain; size_t last_port_in_chain; uhd::rfnoc::ddc_block_control::sptr ddc_ctrl; size_t ddc_chan = 0; bool user_block_found = false; { // First, connect everything dangling off of the radio auto edges = uhd::rfnoc::get_block_chain(graph, radio_ctrl_id, radio_chan, true); last_block_in_chain = edges.back().src_blockid; last_port_in_chain = edges.back().src_port; if (edges.size() > 1) { uhd::rfnoc::connect_through_blocks(graph, radio_ctrl_id, radio_chan, last_block_in_chain, last_port_in_chain); for (auto& edge : edges) { if (uhd::rfnoc::block_id_t(edge.dst_blockid).get_block_name() == "DDC") { ddc_ctrl = graph->get_block(edge.dst_blockid); ddc_chan = edge.dst_port; } if (vm.count("block-id") && edge.dst_blockid == block_id) { user_block_found = true; } } } } // If the user block is not in the chain yet, see if we can connect that // separately if (vm.count("block-id") && !user_block_found) { const auto user_block_id = uhd::rfnoc::block_id_t(block_id); if (!graph->has_block(user_block_id)) { std::cout << "ERROR! No such block: " << block_id << std::endl; return EXIT_FAILURE; } std::cout << "Attempting to connect " << block_id << ":" << last_port_in_chain << " to " << last_block_in_chain << ":" << block_port << "..." << std::endl; uhd::rfnoc::connect_through_blocks( graph, last_block_in_chain, last_port_in_chain, user_block_id, block_port); last_block_in_chain = uhd::rfnoc::block_id_t(block_id); last_port_in_chain = block_port; // Now we have to make sure that there are no more static connections // after the user-defined block auto edges = uhd::rfnoc::get_block_chain( graph, last_block_in_chain, last_port_in_chain, true); if (edges.size() > 1) { uhd::rfnoc::connect_through_blocks(graph, last_block_in_chain, last_port_in_chain, edges.back().src_blockid, edges.back().src_port); last_block_in_chain = edges.back().src_blockid; last_port_in_chain = edges.back().src_port; } } /************************************************************************ * Set up radio ***********************************************************************/ // Lock mboard clocks if (vm.count("ref")) { graph->get_mb_controller(0)->set_clock_source(ref); } // set the center frequency if (vm.count("freq")) { std::cout << "Requesting RX Freq: " << (freq / 1e6) << " MHz..." << std::endl; uhd::tune_request_t tune_request(freq); if (vm.count("int-n")) { radio_ctrl->set_rx_tune_args( uhd::device_addr_t("mode_n=integer"), radio_chan); } radio_ctrl->set_rx_frequency(freq, radio_chan); std::cout << "Actual RX Freq: " << (radio_ctrl->get_rx_frequency(radio_chan) / 1e6) << " MHz..." << std::endl << std::endl; } // set the rf gain if (vm.count("gain")) { std::cout << "Requesting RX Gain: " << gain << " dB..." << std::endl; radio_ctrl->set_rx_gain(gain, radio_chan); std::cout << "Actual RX Gain: " << radio_ctrl->get_rx_gain(radio_chan) << " dB..." << std::endl << std::endl; } // set the IF filter bandwidth if (vm.count("bw")) { std::cout << "Requesting RX Bandwidth: " << (bw / 1e6) << " MHz..." << std::endl; radio_ctrl->set_rx_bandwidth(bw, radio_chan); std::cout << "Actual RX Bandwidth: " << (radio_ctrl->get_rx_bandwidth(radio_chan) / 1e6) << " MHz..." << std::endl << std::endl; } // set the antenna if (vm.count("ant")) { radio_ctrl->set_rx_antenna(ant, radio_chan); } std::this_thread::sleep_for(std::chrono::milliseconds(int64_t(1000 * setup_time))); // check Ref and LO Lock detect if (not vm.count("skip-lo")) { check_locked_sensor( radio_ctrl->get_rx_sensor_names(radio_chan), "lo_locked", [&](const std::string& sensor_name) { return radio_ctrl->get_rx_sensor(sensor_name, radio_chan); }, setup_time); if (ref == "external") { check_locked_sensor( graph->get_mb_controller(0)->get_sensor_names(), "ref_locked", [&](const std::string& sensor_name) { return graph->get_mb_controller(0)->get_sensor(sensor_name); }, setup_time); } } if (vm.count("spp")) { std::cout << "Requesting samples per packet of: " << spp << std::endl; radio_ctrl->set_property("spp", spp, radio_chan); spp = radio_ctrl->get_property("spp", radio_chan); std::cout << "Actual samples per packet = " << spp << std::endl; } /************************************************************************ * Set up streaming ***********************************************************************/ uhd::device_addr_t streamer_args(streamargs); // create a receive streamer uhd::stream_args_t stream_args( format, "sc16"); // We should read the wire format from the blocks stream_args.args = streamer_args; std::cout << "Using streamer args: " << stream_args.args.to_string() << std::endl; auto rx_stream = graph->create_rx_streamer(1, stream_args); // Connect streamer to last block and commit the graph graph->connect(last_block_in_chain, last_port_in_chain, rx_stream, 0); graph->commit(); std::cout << "Active connections:" << std::endl; for (auto& edge : graph->enumerate_active_connections()) { std::cout << "* " << edge.to_string() << std::endl; } /************************************************************************ * Set up sampling rate and (optional) user block properties. We do this * after commit() so we can use the property propagation. ***********************************************************************/ // set the sample rate if (rate <= 0.0) { std::cerr << "Please specify a valid sample rate" << std::endl; return EXIT_FAILURE; } std::cout << "Requesting RX Rate: " << (rate / 1e6) << " Msps..." << std::endl; if (ddc_ctrl) { std::cout << "Setting rate on DDC block!" << std::endl; rate = ddc_ctrl->set_output_rate(rate, ddc_chan); } else { std::cout << "Setting rate on radio block!" << std::endl; rate = radio_ctrl->set_rate(rate); } std::cout << "Actual RX Rate: " << (rate / 1e6) << " Msps..." << std::endl << std::endl; if (vm.count("block-props")) { std::cout << "Setting block properties to: " << block_props << std::endl; graph->get_block(uhd::rfnoc::block_id_t(block_id)) ->set_properties(uhd::device_addr_t(block_props)); } if (total_num_samps == 0) { std::signal(SIGINT, &sig_int_handler); std::cout << "Press Ctrl + C to stop streaming..." << std::endl; } #define recv_to_file_args() \ (rx_stream, \ file, \ spb, \ rate, \ total_num_samps, \ total_time, \ bw_summary, \ stats, \ enable_size_map, \ continue_on_bad_packet) // recv to file if (format == "fc64") recv_to_file> recv_to_file_args(); else if (format == "fc32") recv_to_file> recv_to_file_args(); else if (format == "sc16") recv_to_file> recv_to_file_args(); else throw std::runtime_error("Unknown data format: " + format); // finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }