// // Copyright 2014-15 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // // Example for GPIO testing and bit banging. // // This example was originally designed to test the 11 bit wide front panel // GPIO on the X300 series and has since been adapted to work with any GPIO // bank on any USRP and provide optional bit banging. Please excuse the // clutter. Also, there is no current way to detect the width of the // specified GPIO bank, so the user must specify the width with the --bits // flag if more than 11 bits. // // GPIO Testing: // For testing, GPIO bits are set as follows: // GPIO[0] = ATR output 1 at idle // GPIO[1] = ATR output 1 during RX // GPIO[2] = ATR output 1 during TX // GPIO[3] = ATR output 1 during full duplex // GPIO[4] = output // GPIO[n:5] = input (all other pins) // The testing cycles through idle, TX, RX, and full duplex, dwelling on each // test case (default 2 seconds), and then comparing the readback register with // the expected values of the outputs for verification. The values of all GPIO // registers are displayed at the end of each test case. Outputs can be // physically looped back to inputs to manually verify the inputs. // // GPIO Bit Banging: // GPIO banks have the standard registers of DDR for data direction and OUT // for output values. Users can bit bang the GPIO bits by using this example // with the --bitbang flag and specifying the --ddr and --out flags to set the // values of the corresponding registers. The READBACK register is // continuously read for the duration of the dwell time (default 2 seconds) so // users can monitor changes on the inputs. // // Automatic Transmit/Receive (ATR): // In addition to the standard DDR and OUT registers, the GPIO banks also // have ATR (Automatic Transmit/Receive) control registers that allow the // GPIO pins to be automatically set to specific values when the USRP is // idle, transmitting, receiving, or operating in full duplex mode. The // description of these registers is below: // CTRL - Control (0=manual, 1=ATR) // ATR_0X - Values to be set when idle // ATR_RX - Output values to be set when receiving // ATR_TX - Output values to be set when transmitting // ATR_XX - Output values to be set when operating in full duplex // This code below contains examples of setting all these registers. On // devices with multiple radios, the ATR for the front panel GPIO is driven // by the state of the first radio (0 or A). // // The UHD API // The multi_usrp::set_gpio_attr() method is the UHD API for configuring and // controlling the GPIO banks. The parameters to the method are: // bank - the name of the GPIO bank (typically "FP0" for front panel GPIO, // "TX" for TX daughter card GPIO, or // "RX" for RX daughter card GPIO) // attr - attribute (register) to change ("DDR", "OUT", "CTRL", "ATR_0X", // "ATR_RX", "ATR_TX", "ATR_XX") // value - the value to be set // mask - a mask indicating which bits in the specified attribute register are // to be changed (default is all bits). #include #include #include #include #include #include #include #include #include #include #include #include static const std::string GPIO_DEFAULT_CPU_FORMAT = "fc32"; static const std::string GPIO_DEFAULT_OTW_FORMAT = "sc16"; static const double GPIO_DEFAULT_RX_RATE = 500e3; static const double GPIO_DEFAULT_TX_RATE = 500e3; static const double GPIO_DEFAULT_DWELL_TIME = 2.0; static const std::string GPIO_DEFAULT_GPIO = "FP0"; static const size_t GPIO_DEFAULT_NUM_BITS = 11; static const std::string GPIO_DEFAULT_CTRL = "0x0"; // all as user controlled static const std::string GPIO_DEFAULT_DDR = "0x0"; // all as inputs static const std::string GPIO_DEFAULT_OUT = "0x0"; static inline uint32_t GPIO_BIT(const size_t x) { return (1 << x); } namespace po = boost::program_options; static bool stop_signal_called = false; void sig_int_handler(int){stop_signal_called = true;} std::string to_bit_string(uint32_t val, const size_t num_bits) { std::string out; for (int i = num_bits - 1; i >= 0; i--) { std::string bit = ((val >> i) & 1) ? "1" : "0"; out += " "; out += bit; } return out; } void output_reg_values( const std::string bank, const uhd::usrp::multi_usrp::sptr &usrp, const size_t num_bits ) { const std::vector attrs = { "CTRL", "DDR", "ATR_0X", "ATR_RX", "ATR_TX", "ATR_XX", "OUT", "READBACK" }; std::cout << (boost::format("%10s ") % "Bit"); for (int i = num_bits - 1; i >= 0; i--) std::cout << (boost::format(" %2d") % i); std::cout << std::endl; for (const auto &attr : attrs) { const uint32_t gpio_bits = uint32_t(usrp->get_gpio_attr(bank, attr)); std::cout << (boost::format("%10s:%s") % attr % to_bit_string(gpio_bits, num_bits)) << std::endl; } } int UHD_SAFE_MAIN(int argc, char *argv[]) { uhd::set_thread_priority_safe(); //variables to be set by po std::string args; std::string cpu, otw; double rx_rate, tx_rate, dwell; std::string gpio; size_t num_bits; std::string ctrl_str; std::string ddr_str; std::string out_str; //setup the program options po::options_description desc("Allowed options"); desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "multi uhd device address args") ("repeat", "repeat loop until Ctrl-C is pressed") ("cpu", po::value(&cpu)->default_value(GPIO_DEFAULT_CPU_FORMAT), "cpu data format") ("otw", po::value(&otw)->default_value(GPIO_DEFAULT_OTW_FORMAT), "over the wire data format") ("rx_rate", po::value(&rx_rate)->default_value(GPIO_DEFAULT_RX_RATE), "rx sample rate") ("tx_rate", po::value(&tx_rate)->default_value(GPIO_DEFAULT_TX_RATE), "tx sample rate") ("dwell", po::value(&dwell)->default_value(GPIO_DEFAULT_DWELL_TIME), "dwell time in seconds for each test case") ("bank", po::value(&gpio)->default_value(GPIO_DEFAULT_GPIO), "name of gpio bank") ("bits", po::value(&num_bits)->default_value(GPIO_DEFAULT_NUM_BITS), "number of bits in gpio bank") ("bitbang", "single test case where user sets values for CTRL, DDR, and OUT registers") ("ddr", po::value(&ddr_str)->default_value(GPIO_DEFAULT_DDR), "GPIO DDR reg value") ("out", po::value(&out_str)->default_value(GPIO_DEFAULT_OUT), "GPIO OUT reg value") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //print the help message if (vm.count("help")){ std::cout << boost::format("gpio %s") % desc << std::endl; return ~0; } //create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; //print out initial unconfigured state of FP GPIO std::cout << "Initial GPIO values:" << std::endl; output_reg_values(gpio, usrp, num_bits); //configure GPIO registers uint32_t ddr = strtoul(ddr_str.c_str(), NULL, 0); uint32_t out = strtoul(out_str.c_str(), NULL, 0); uint32_t ctrl = 0; uint32_t atr_idle = 0; uint32_t atr_rx = 0; uint32_t atr_tx = 0; uint32_t atr_duplex = 0; uint32_t mask = (1 << num_bits) - 1; if (!vm.count("bitbang")) { //set up GPIO outputs: //GPIO[0] = ATR output 1 at idle ctrl |= GPIO_BIT(0); atr_idle |= GPIO_BIT(0); ddr |= GPIO_BIT(0); //GPIO[1] = ATR output 1 during RX ctrl |= GPIO_BIT(1); ddr |= GPIO_BIT(1); atr_rx |= GPIO_BIT(1); //GPIO[2] = ATR output 1 during TX ctrl |= GPIO_BIT(2); ddr |= GPIO_BIT(2); atr_tx |= GPIO_BIT(2); //GPIO[3] = ATR output 1 during full duplex ctrl |= GPIO_BIT(3); ddr |= GPIO_BIT(3); atr_duplex |= GPIO_BIT(3); //GPIO[4] = output ddr |= GPIO_BIT(4); } //set data direction register (DDR) usrp->set_gpio_attr(gpio, "DDR", ddr, mask); //set control register usrp->set_gpio_attr(gpio, "CTRL", ctrl, mask); //set output values (OUT) usrp->set_gpio_attr(gpio, "OUT", out, mask); //set ATR registers usrp->set_gpio_attr(gpio, "ATR_0X", atr_idle, mask); usrp->set_gpio_attr(gpio, "ATR_RX", atr_rx, mask); usrp->set_gpio_attr(gpio, "ATR_TX", atr_tx, mask); usrp->set_gpio_attr(gpio, "ATR_XX", atr_duplex, mask); //print out initial state of FP GPIO std::cout << "\nConfigured GPIO values:" << std::endl; output_reg_values(gpio, usrp, num_bits); std::cout << std::endl; //set up streams uhd::stream_args_t rx_args(cpu, otw); uhd::stream_args_t tx_args(cpu, otw); uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(rx_args); uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(tx_args); uhd::stream_cmd_t rx_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); rx_cmd.stream_now = true; usrp->set_rx_rate(rx_rate); usrp->set_tx_rate(tx_rate); //set up buffers for tx and rx const size_t max_samps_per_packet = rx_stream->get_max_num_samps(); const size_t nsamps_per_buff = max_samps_per_packet; std::vector rx_buff(max_samps_per_packet*uhd::convert::get_bytes_per_item(cpu)); std::vector tx_buff(max_samps_per_packet*uhd::convert::get_bytes_per_item(cpu)); std::vector rx_buffs, tx_buffs; for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++) rx_buffs.push_back(&rx_buff.front()); //same buffer for each channel for (size_t ch = 0; ch < tx_stream->get_num_channels(); ch++) tx_buffs.push_back(&tx_buff.front()); //same buffer for each channel uhd::rx_metadata_t rx_md; uhd::tx_metadata_t tx_md; tx_md.has_time_spec = false; tx_md.start_of_burst = true; uhd::time_spec_t stop_time; double timeout = 0.01; uhd::time_spec_t dwell_time(dwell); int loop = 0; uint32_t rb, expected; //register signal handler std::signal(SIGINT, &sig_int_handler); if (!vm.count("bitbang")) { // Test the mask parameter of the multi_usrp::set_gpio_attr API // We only need to test once with no dwell time std::cout << "\nTesting mask..." << std::flush; //send a value of all 1's to the DDR with a mask for only upper most bit usrp->set_gpio_attr(gpio, "DDR", ~0, GPIO_BIT(num_bits - 1)); //upper most bit should now be 1, but all the other bits should be unchanged rb = usrp->get_gpio_attr(gpio, "DDR") & mask; expected = ddr | GPIO_BIT(num_bits - 1); if (rb == expected) std::cout << "pass:" << std::endl; else std::cout << "fail:" << std::endl; output_reg_values(gpio, usrp, num_bits); //restore DDR value usrp->set_gpio_attr(gpio, "DDR", ddr, mask); } while (not stop_signal_called) { int failures = 0; if (vm.count("repeat")) std::cout << "Press Ctrl + C to quit..." << std::endl; if (vm.count("bitbang")) { // dwell and continuously read back GPIO values stop_time = usrp->get_time_now() + dwell_time; while (not stop_signal_called and usrp->get_time_now() < stop_time) { rb = usrp->get_gpio_attr(gpio, "READBACK"); std::cout << "\rREADBACK: " << to_bit_string(rb, num_bits); std::this_thread::sleep_for(std::chrono::milliseconds(10)); } std::cout << std::endl; } else { // test user controlled GPIO and ATR idle by setting bit 4 high for 1 second std::cout << "\nTesting user controlled GPIO and ATR idle output..." << std::flush; usrp->set_gpio_attr(gpio, "OUT", 1 << 4, 1 << 4); stop_time = usrp->get_time_now() + dwell_time; while (not stop_signal_called and usrp->get_time_now() < stop_time) { std::this_thread::sleep_for(std::chrono::milliseconds(100)); } rb = usrp->get_gpio_attr(gpio, "READBACK"); expected = GPIO_BIT(4) | GPIO_BIT(0); if ((rb & expected) != expected) { ++failures; std::cout << "fail:" << std::endl; if ((rb & GPIO_BIT(0)) == 0) std::cout << "Bit 0 should be set, but is not" << std::endl; if ((rb & GPIO_BIT(4)) == 0) std::cout << "Bit 4 should be set, but is not" << std::endl; } else { std::cout << "pass:" << std::endl; } output_reg_values(gpio, usrp, num_bits); usrp->set_gpio_attr(gpio, "OUT", 0, GPIO_BIT(4)); if (stop_signal_called) break; // test ATR RX by receiving for 1 second std::cout << "\nTesting ATR RX output..." << std::flush; rx_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS; rx_stream->issue_stream_cmd(rx_cmd); stop_time = usrp->get_time_now() + dwell_time; while (not stop_signal_called and usrp->get_time_now() < stop_time) { try { rx_stream->recv(rx_buffs, nsamps_per_buff, rx_md, timeout); } catch(...){} } rb = usrp->get_gpio_attr(gpio, "READBACK"); expected = GPIO_BIT(1); if ((rb & expected) != expected) { ++failures; std::cout << "fail:" << std::endl; std::cout << "Bit 1 should be set, but is not" << std::endl; } else { std::cout << "pass:" << std::endl; } output_reg_values(gpio, usrp, num_bits); rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS); //clear out any data left in the rx stream try { rx_stream->recv(rx_buffs, nsamps_per_buff, rx_md, timeout); } catch(...){} if (stop_signal_called) break; // test ATR TX by transmitting for 1 second std::cout << "\nTesting ATR TX output..." << std::flush; stop_time = usrp->get_time_now() + dwell_time; tx_md.start_of_burst = true; tx_md.end_of_burst = false; while (not stop_signal_called and usrp->get_time_now() < stop_time) { try { tx_stream->send(tx_buffs, nsamps_per_buff, tx_md, timeout); tx_md.start_of_burst = false; } catch(...){} } rb = usrp->get_gpio_attr(gpio, "READBACK"); expected = GPIO_BIT(2); if ((rb & expected) != expected) { ++failures; std::cout << "fail:" << std::endl; std::cout << "Bit 2 should be set, but is not" << std::endl; } else { std::cout << "pass:" << std::endl; } output_reg_values(gpio, usrp, num_bits); tx_md.end_of_burst = true; try { tx_stream->send(tx_buffs, nsamps_per_buff, tx_md, timeout); } catch(...){} if (stop_signal_called) break; // test ATR RX by transmitting and receiving for 1 second std::cout << "\nTesting ATR full duplex output..." << std::flush; rx_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS; rx_stream->issue_stream_cmd(rx_cmd); tx_md.start_of_burst = true; tx_md.end_of_burst = false; stop_time = usrp->get_time_now() + dwell_time; while (not stop_signal_called and usrp->get_time_now() < stop_time) { try { tx_stream->send(rx_buffs, nsamps_per_buff, tx_md, timeout); tx_md.start_of_burst = false; rx_stream->recv(tx_buffs, nsamps_per_buff, rx_md, timeout); } catch(...){} } rb = usrp->get_gpio_attr(gpio, "READBACK"); expected = GPIO_BIT(3); if ((rb & expected) != expected) { ++failures; std::cout << "fail:" << std::endl; std::cout << "Bit 3 should be set, but is not" << std::endl; } else { std::cout << "pass:" << std::endl; } output_reg_values(gpio, usrp, num_bits); rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS); tx_md.end_of_burst = true; try { tx_stream->send(tx_buffs, nsamps_per_buff, tx_md, timeout); } catch(...){} //clear out any data left in the rx stream try { rx_stream->recv(rx_buffs, nsamps_per_buff, rx_md, timeout); } catch(...){} std::cout << std::endl; if (failures) std::cout << failures << " tests failed" << std::endl; else std::cout << "All tests passed!" << std::endl; } if (!vm.count("repeat")) break; if (not stop_signal_called) std::cout << (boost::format("\nLoop %d completed") % ++loop) << std::endl; } //finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }