//
// Copyright 2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// Example for front panel GPIO.
// Bits are set as follows:
// FPGPIO[0] = ATR output 1 at idle
// FPGPIO[1] = ATR output 1 during RX
// FPGPIO[2] = ATR output 1 during TX
// FPGPIO[3] = ATR output 1 during full duplex
// FPGPIO[4] = output
// FPGPIO[5] = input
// FPGPIO[6] = input
// FPGPIO[7] = input
// FPGPIO[8] = input
// FPGPIO[9] = input
// FPGPIO[10] = input
// The example cycles through idle, TX, RX, and full duplex, spending 2 seconds for each.
// Outputs can be physically looped back to inputs for verification testing.
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define FPGPIO_DEFAULT_CPU_FORMAT "fc32"
#define FPGPIO_DEFAULT_OTW_FORMAT "sc16"
#define FPGPIO_DEFAULT_RX_RATE 1e6
#define FPGPIO_DEFAULT_TX_RATE 1e6
#define FPGPIO_DEFAULT_DWELL_TIME 2.0
#define FPGPIO_NUM_BITS 11
#define FPGPIO_BIT(x) (1 << x)
namespace po = boost::program_options;
static bool stop_signal_called = false;
void sig_int_handler(int){stop_signal_called = true;}
std::string to_bit_string(boost::uint16_t val)
{
std::string out;
for (int i = FPGPIO_NUM_BITS - 1; i >= 0; i--)
{
std::string bit = ((val >> i) & 1) ? "1" : "0";
out += " ";
out += bit;
}
return out;
}
void output_reg_values(const std::string bank, const uhd::usrp::multi_usrp::sptr &usrp)
{
std::cout << (boost::format("Bit "));
for (int i = FPGPIO_NUM_BITS - 1; i >= 0; i--)
std::cout << (boost::format(" %s%d") % (i < 10 ? " " : "") % i);
std::cout << std::endl;
std::cout << "CTRL: " << to_bit_string(boost::uint16_t(usrp->get_gpio_attr(bank, std::string("CTRL")))) << std::endl;
std::cout << "DDR: " << to_bit_string(boost::uint16_t(usrp->get_gpio_attr(bank, std::string("DDR")))) << std::endl;
std::cout << "ATR_0X: " << to_bit_string(boost::uint16_t(usrp->get_gpio_attr(bank, std::string("ATR_0X")))) << std::endl;
std::cout << "ATR_RX: " << to_bit_string(boost::uint16_t(usrp->get_gpio_attr(bank, std::string("ATR_RX")))) << std::endl;
std::cout << "ATR_TX: " << to_bit_string(boost::uint16_t(usrp->get_gpio_attr(bank, std::string("ATR_TX")))) << std::endl;
std::cout << "ATR_XX: " << to_bit_string(boost::uint16_t(usrp->get_gpio_attr(bank, std::string("ATR_XX")))) << std::endl;
std::cout << "OUT: " << to_bit_string(boost::uint16_t(usrp->get_gpio_attr(bank, std::string("OUT")))) << std::endl;
std::cout << "READBACK: " << to_bit_string(boost::uint16_t(usrp->get_gpio_attr(bank, std::string("READBACK")))) << std::endl;
}
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args;
std::string cpu, otw;
double rx_rate, tx_rate, dwell;
const std::string fpgpio = "FP0";
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value(&args)->default_value(""), "multi uhd device address args")
("repeat", "repeat loop until Ctrl-C is pressed")
("cpu", po::value(&cpu)->default_value(FPGPIO_DEFAULT_CPU_FORMAT), "cpu data format")
("otw", po::value(&otw)->default_value(FPGPIO_DEFAULT_OTW_FORMAT), "over the wire data format")
("rx_rate", po::value(&rx_rate)->default_value(FPGPIO_DEFAULT_RX_RATE), "rx sample rate")
("tx_rate", po::value(&tx_rate)->default_value(FPGPIO_DEFAULT_TX_RATE), "tx sample rate")
("dwell", po::value(&dwell)->default_value(FPGPIO_DEFAULT_DWELL_TIME), "dwell time in seconds for each test case")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("Front Panel GPIO %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
//print out initial unconfigured state of FP GPIO
std::cout << "Unconfigured GPIO values:" << std::endl;
output_reg_values(fpgpio, usrp);
//configure GPIO registers
boost::uint32_t ctrl = 0; // default all as manual
boost::uint32_t ddr = 0; // default all as input
boost::uint32_t atr_idle = 0;
boost::uint32_t atr_rx = 0;
boost::uint32_t atr_tx = 0;
boost::uint32_t atr_duplex = 0;
boost::uint32_t mask = 0x7ff;
//set up FPGPIO outputs:
//FPGPIO[0] = ATR output 1 at idle
ctrl |= FPGPIO_BIT(0);
atr_idle |= FPGPIO_BIT(0);
ddr |= FPGPIO_BIT(0);
//FPGPIO[1] = ATR output 1 during RX
ctrl |= FPGPIO_BIT(1);
ddr |= FPGPIO_BIT(1);
atr_rx |= FPGPIO_BIT(1);
//FPGPIO[2] = ATR output 1 during TX
ctrl |= FPGPIO_BIT(2);
ddr |= FPGPIO_BIT(2);
atr_tx |= FPGPIO_BIT(2);
//FPGPIO[3] = ATR output 1 during full duplex
ctrl |= FPGPIO_BIT(3);
ddr |= FPGPIO_BIT(3);
atr_duplex |= FPGPIO_BIT(3);
//FPGPIO[4] = output
ddr |= FPGPIO_BIT(4);
//set data direction register (DDR)
usrp->set_gpio_attr(fpgpio, std::string("DDR"), ddr, mask);
//set ATR registers
usrp->set_gpio_attr(fpgpio, std::string("ATR_0X"), atr_idle, mask);
usrp->set_gpio_attr(fpgpio, std::string("ATR_RX"), atr_rx, mask);
usrp->set_gpio_attr(fpgpio, std::string("ATR_TX"), atr_tx, mask);
usrp->set_gpio_attr(fpgpio, std::string("ATR_XX"), atr_duplex, mask);
//set control register
usrp->set_gpio_attr(fpgpio, std::string("CTRL"), ctrl, mask);
//print out initial state of FP GPIO
std::cout << "\nConfigured GPIO values:" << std::endl;
output_reg_values(fpgpio, usrp);
std::cout << std::endl;
//set up streams
uhd::stream_args_t rx_args(cpu, otw);
uhd::stream_args_t tx_args(cpu, otw);
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(rx_args);
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(tx_args);
uhd::stream_cmd_t rx_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
rx_cmd.stream_now = true;
usrp->set_rx_rate(rx_rate);
usrp->set_tx_rate(tx_rate);
//set up buffers for tx and rx
const size_t max_samps_per_packet = rx_stream->get_max_num_samps();
const size_t nsamps_per_buff = max_samps_per_packet;
std::vector rx_buff(max_samps_per_packet*uhd::convert::get_bytes_per_item(cpu));
std::vector tx_buff(max_samps_per_packet*uhd::convert::get_bytes_per_item(cpu));
std::vector rx_buffs, tx_buffs;
for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++)
rx_buffs.push_back(&rx_buff.front()); //same buffer for each channel
for (size_t ch = 0; ch < tx_stream->get_num_channels(); ch++)
tx_buffs.push_back(&tx_buff.front()); //same buffer for each channel
uhd::rx_metadata_t rx_md;
uhd::tx_metadata_t tx_md;
tx_md.has_time_spec = false;
tx_md.start_of_burst = true;
uhd::time_spec_t stop_time;
double timeout = 0.01;
uhd::time_spec_t dwell_time(dwell);
int loop = 0;
boost::uint32_t rb, expected;
//register singal handler
std::signal(SIGINT, &sig_int_handler);
//Test the mask - only need to test once with no dwell time
std::cout << "\nTesting mask..." << std::flush;
//send a value of all 1's to the DDR with a mask for only bit 10
usrp->set_gpio_attr(fpgpio, std::string("DDR"), ~0, FPGPIO_BIT(10));
//bit 10 should now be 1, but all the other bits should be unchanged
rb = usrp->get_gpio_attr(fpgpio, std::string("DDR")) & mask;
expected = ddr | FPGPIO_BIT(10);
if (rb == expected)
std::cout << "pass" << std::endl;
else
std::cout << "fail" << std::endl;
std::cout << std::endl;
output_reg_values(fpgpio, usrp);
usrp->set_gpio_attr(fpgpio, std::string("DDR"), ddr, mask);
while (not stop_signal_called)
{
int failures = 0;
if (vm.count("repeat"))
std::cout << "Press Ctrl + C to quit..." << std::endl;
// test user controlled GPIO and ATR idle by setting bit 4 high for 1 second
std::cout << "\nTesting user controlled GPIO and ATR idle output..." << std::flush;
usrp->set_gpio_attr(fpgpio, "OUT", 1 << 4, 1 << 4);
stop_time = usrp->get_time_now() + dwell_time;
while (not stop_signal_called and usrp->get_time_now() < stop_time)
{
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
}
rb = usrp->get_gpio_attr(fpgpio, "READBACK");
expected = FPGPIO_BIT(4) | FPGPIO_BIT(0);
if ((rb & expected) != expected)
{
++failures;
std::cout << "fail" << std::endl;
if ((rb & FPGPIO_BIT(0)) == 0)
std::cout << "Bit 0 should be set, but is not" << std::endl;
if ((rb & FPGPIO_BIT(4)) == 0)
std::cout << "Bit 4 should be set, but is not" << std::endl;
} else {
std::cout << "pass" << std::endl;
}
std::cout << std::endl;
output_reg_values(fpgpio, usrp);
usrp->set_gpio_attr(fpgpio, "OUT", 0, FPGPIO_BIT(4));
if (stop_signal_called)
break;
// test ATR RX by receiving for 1 second
std::cout << "\nTesting ATR RX output..." << std::flush;
rx_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS;
rx_stream->issue_stream_cmd(rx_cmd);
stop_time = usrp->get_time_now() + dwell_time;
while (not stop_signal_called and usrp->get_time_now() < stop_time)
{
try {
rx_stream->recv(rx_buffs, nsamps_per_buff, rx_md, timeout);
} catch(...){}
}
rb = usrp->get_gpio_attr(fpgpio, "READBACK");
expected = FPGPIO_BIT(1);
if ((rb & expected) != expected)
{
++failures;
std::cout << "fail" << std::endl;
std::cout << "Bit 1 should be set, but is not" << std::endl;
} else {
std::cout << "pass" << std::endl;
}
std::cout << std::endl;
output_reg_values(fpgpio, usrp);
rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
//clear out any data left in the rx stream
try {
rx_stream->recv(rx_buffs, nsamps_per_buff, rx_md, timeout);
} catch(...){}
if (stop_signal_called)
break;
// test ATR TX by transmitting for 1 second
std::cout << "\nTesting ATR TX output..." << std::flush;
stop_time = usrp->get_time_now() + dwell_time;
tx_md.start_of_burst = true;
tx_md.end_of_burst = false;
while (not stop_signal_called and usrp->get_time_now() < stop_time)
{
try {
tx_stream->send(tx_buffs, nsamps_per_buff, tx_md, timeout);
tx_md.start_of_burst = false;
} catch(...){}
}
rb = usrp->get_gpio_attr(fpgpio, "READBACK");
expected = FPGPIO_BIT(2);
if ((rb & expected) != expected)
{
++failures;
std::cout << "fail" << std::endl;
std::cout << "Bit 2 should be set, but is not" << std::endl;
} else {
std::cout << "pass" << std::endl;
}
std::cout << std::endl;
output_reg_values(fpgpio, usrp);
tx_md.end_of_burst = true;
try {
tx_stream->send(tx_buffs, nsamps_per_buff, tx_md, timeout);
} catch(...){}
if (stop_signal_called)
break;
// test ATR RX by transmitting and receiving for 1 second
std::cout << "\nTesting ATR full duplex output..." << std::flush;
rx_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS;
rx_stream->issue_stream_cmd(rx_cmd);
tx_md.start_of_burst = true;
tx_md.end_of_burst = false;
stop_time = usrp->get_time_now() + dwell_time;
while (not stop_signal_called and usrp->get_time_now() < stop_time)
{
try {
tx_stream->send(rx_buffs, nsamps_per_buff, tx_md, timeout);
tx_md.start_of_burst = false;
rx_stream->recv(tx_buffs, nsamps_per_buff, rx_md, timeout);
} catch(...){}
}
rb = usrp->get_gpio_attr(fpgpio, "READBACK");
expected = FPGPIO_BIT(3);
if ((rb & expected) != expected)
{
++failures;
std::cout << "fail" << std::endl;
std::cout << "Bit 3 should be set, but is not" << std::endl;
} else {
std::cout << "pass" << std::endl;
}
std::cout << std::endl;
output_reg_values(fpgpio, usrp);
rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
tx_md.end_of_burst = true;
try {
tx_stream->send(tx_buffs, nsamps_per_buff, tx_md, timeout);
} catch(...){}
//clear out any data left in the rx stream
try {
rx_stream->recv(rx_buffs, nsamps_per_buff, rx_md, timeout);
} catch(...){}
std::cout << std::endl;
if (failures)
std::cout << failures << " tests failed" << std::endl;
else
std::cout << "All tests passed!" << std::endl;
if (!vm.count("repeat"))
break;
std::cout << (boost::format("\nLoop %d completed") % ++loop) << std::endl;
}
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}