// // Copyright 2011-2015 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; using namespace std::chrono_literals; namespace { constexpr auto CLOCK_TIMEOUT = 1000ms; // 1000mS timeout for external clock locking constexpr float INIT_DELAY = 0.05; // 50mS initial delay before transmit } // namespace using start_time_type = std::chrono::time_point; /*********************************************************************** * Test result variables **********************************************************************/ unsigned long long num_overruns = 0; unsigned long long num_underruns = 0; unsigned long long num_rx_samps = 0; unsigned long long num_tx_samps = 0; unsigned long long num_dropped_samps = 0; unsigned long long num_seq_errors = 0; unsigned long long num_seqrx_errors = 0; // "D"s unsigned long long num_late_commands = 0; unsigned long long num_timeouts_rx = 0; unsigned long long num_timeouts_tx = 0; inline auto time_delta(const start_time_type& ref_time) { return std::chrono::steady_clock::now() - ref_time; } inline std::string time_delta_str(const start_time_type& ref_time) { const auto delta = time_delta(ref_time); const auto hours = std::chrono::duration_cast(delta); const auto minutes = std::chrono::duration_cast(delta - hours); const auto seconds = std::chrono::duration_cast(delta - hours - minutes); const auto nanoseconds = std::chrono::duration_cast( delta - hours - minutes - seconds); return str(boost::format("%02d:%02d:%02d.%06d") % hours.count() % minutes.count() % seconds.count() % nanoseconds.count()); } #define NOW() (time_delta_str(start_time)) volatile bool set_realtime_priority = false; /*********************************************************************** * Benchmark RX Rate **********************************************************************/ void benchmark_rx_rate(uhd::usrp::multi_usrp::sptr usrp, const std::string& rx_cpu, uhd::rx_streamer::sptr rx_stream, bool random_nsamps, const start_time_type& start_time, std::atomic& burst_timer_elapsed) { if (set_realtime_priority) { uhd::set_thread_priority_safe(); } // print pre-test summary std::cout << boost::format("[%s] Testing receive rate %f Msps on %u channels") % NOW() % (usrp->get_rx_rate() / 1e6) % rx_stream->get_num_channels() << std::endl; // setup variables and allocate buffer uhd::rx_metadata_t md; const size_t max_samps_per_packet = rx_stream->get_max_num_samps(); std::vector buff( max_samps_per_packet * uhd::convert::get_bytes_per_item(rx_cpu)); std::vector buffs; for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++) buffs.push_back(&buff.front()); // same buffer for each channel bool had_an_overflow = false; uhd::time_spec_t last_time; const double rate = usrp->get_rx_rate(); uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); cmd.time_spec = usrp->get_time_now() + uhd::time_spec_t(INIT_DELAY); cmd.stream_now = (buffs.size() == 1); rx_stream->issue_stream_cmd(cmd); const float burst_pkt_time = std::max(0.100f, (2 * max_samps_per_packet / rate)); float recv_timeout = burst_pkt_time + INIT_DELAY; bool stop_called = false; while (true) { if (burst_timer_elapsed and not stop_called) { rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS); stop_called = true; } if (random_nsamps) { cmd.num_samps = rand() % max_samps_per_packet; rx_stream->issue_stream_cmd(cmd); } try { num_rx_samps += rx_stream->recv(buffs, max_samps_per_packet, md, recv_timeout) * rx_stream->get_num_channels(); recv_timeout = burst_pkt_time; } catch (uhd::io_error& e) { std::cerr << "[" << NOW() << "] Caught an IO exception. " << std::endl; std::cerr << e.what() << std::endl; return; } // handle the error codes switch (md.error_code) { case uhd::rx_metadata_t::ERROR_CODE_NONE: if (had_an_overflow) { had_an_overflow = false; const long dropped_samps = (md.time_spec - last_time).to_ticks(rate); if (dropped_samps < 0) { std::cerr << "[" << NOW() << "] Timestamp after overrun recovery " "ahead of error timestamp! Unable to calculate " "number of dropped samples." "(Delta: " << dropped_samps << " ticks)\n"; } num_dropped_samps += std::max(1, dropped_samps); } if ((burst_timer_elapsed or stop_called) and md.end_of_burst) { return; } break; // ERROR_CODE_OVERFLOW can indicate overflow or sequence error case uhd::rx_metadata_t::ERROR_CODE_OVERFLOW: last_time = md.time_spec; had_an_overflow = true; // check out_of_sequence flag to see if it was a sequence error or // overflow if (!md.out_of_sequence) { num_overruns++; } else { num_seqrx_errors++; std::cerr << "[" << NOW() << "] Detected Rx sequence error." << std::endl; } break; case uhd::rx_metadata_t::ERROR_CODE_LATE_COMMAND: std::cerr << "[" << NOW() << "] Receiver error: " << md.strerror() << ", restart streaming..." << std::endl; num_late_commands++; // Radio core will be in the idle state. Issue stream command to restart // streaming. cmd.time_spec = usrp->get_time_now() + uhd::time_spec_t(0.05); cmd.stream_now = (buffs.size() == 1); rx_stream->issue_stream_cmd(cmd); break; case uhd::rx_metadata_t::ERROR_CODE_TIMEOUT: if (burst_timer_elapsed) { return; } std::cerr << "[" << NOW() << "] Receiver error: " << md.strerror() << ", continuing..." << std::endl; num_timeouts_rx++; break; // Otherwise, it's an error default: std::cerr << "[" << NOW() << "] Receiver error: " << md.strerror() << std::endl; std::cerr << "[" << NOW() << "] Unexpected error on recv, continuing..." << std::endl; break; } } } /*********************************************************************** * Benchmark TX Rate **********************************************************************/ void benchmark_tx_rate(uhd::usrp::multi_usrp::sptr usrp, const std::string& tx_cpu, uhd::tx_streamer::sptr tx_stream, std::atomic& burst_timer_elapsed, const start_time_type& start_time, const size_t spp, bool random_nsamps = false) { if (set_realtime_priority) { uhd::set_thread_priority_safe(); } // print pre-test summary std::cout << boost::format("[%s] Testing transmit rate %f Msps on %u channels") % NOW() % (usrp->get_tx_rate() / 1e6) % tx_stream->get_num_channels() << std::endl; // setup variables and allocate buffer const size_t max_samps_per_packet = tx_stream->get_max_num_samps(); std::vector buff( max_samps_per_packet * uhd::convert::get_bytes_per_item(tx_cpu)); std::vector buffs; for (size_t ch = 0; ch < tx_stream->get_num_channels(); ch++) buffs.push_back(&buff.front()); // same buffer for each channel // Create the metadata, and populate the time spec at the latest possible moment uhd::tx_metadata_t md; md.has_time_spec = (buffs.size() != 1); md.time_spec = usrp->get_time_now() + uhd::time_spec_t(INIT_DELAY); if (random_nsamps) { std::srand((unsigned int)time(NULL)); while (not burst_timer_elapsed) { size_t total_num_samps = rand() % max_samps_per_packet; size_t num_acc_samps = 0; const float timeout = 1; usrp->set_time_now(uhd::time_spec_t(0.0)); while (num_acc_samps < total_num_samps) { // send a single packet num_tx_samps += tx_stream->send(buffs, spp, md, timeout) * tx_stream->get_num_channels(); num_acc_samps += std::min( total_num_samps - num_acc_samps, tx_stream->get_max_num_samps()); } } } else { while (not burst_timer_elapsed) { const size_t num_tx_samps_sent_now = tx_stream->send(buffs, spp, md) * tx_stream->get_num_channels(); num_tx_samps += num_tx_samps_sent_now; if (num_tx_samps_sent_now == 0) { num_timeouts_tx++; if ((num_timeouts_tx % 10000) == 1) { std::cerr << "[" << NOW() << "] Tx timeouts: " << num_timeouts_tx << std::endl; } } md.has_time_spec = false; } } // send a mini EOB packet md.end_of_burst = true; tx_stream->send(buffs, 0, md); } void benchmark_tx_rate_async_helper(uhd::tx_streamer::sptr tx_stream, const start_time_type& start_time, std::atomic& burst_timer_elapsed) { // setup variables and allocate buffer uhd::async_metadata_t async_md; bool exit_flag = false; while (true) { if (burst_timer_elapsed) { exit_flag = true; } if (not tx_stream->recv_async_msg(async_md)) { if (exit_flag == true) return; continue; } // handle the error codes switch (async_md.event_code) { case uhd::async_metadata_t::EVENT_CODE_BURST_ACK: return; case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW: case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW_IN_PACKET: num_underruns++; break; case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR: case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR_IN_BURST: num_seq_errors++; break; default: std::cerr << "[" << NOW() << "] Event code: " << async_md.event_code << std::endl; std::cerr << "Unexpected event on async recv, continuing..." << std::endl; break; } } } /*********************************************************************** * Main code + dispatcher **********************************************************************/ int UHD_SAFE_MAIN(int argc, char* argv[]) { // variables to be set by po std::string args; std::string rx_subdev, tx_subdev; std::string rx_stream_args, tx_stream_args; double duration; double rx_rate, tx_rate; std::string rx_otw, tx_otw; std::string rx_cpu, tx_cpu; std::string ref, pps; std::string channel_list, rx_channel_list, tx_channel_list; bool random_nsamps = false; std::atomic burst_timer_elapsed(false); size_t overrun_threshold, underrun_threshold, drop_threshold, seq_threshold; size_t rx_spp, tx_spp; // setup the program options po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("args", po::value(&args)->default_value(""), "single uhd device address args") ("duration", po::value(&duration)->default_value(10.0), "duration for the test in seconds") ("rx_subdev", po::value(&rx_subdev), "specify the device subdev for RX") ("tx_subdev", po::value(&tx_subdev), "specify the device subdev for TX") ("rx_stream_args", po::value(&rx_stream_args)->default_value(""), "stream args for RX streamer") ("tx_stream_args", po::value(&tx_stream_args)->default_value(""), "stream args for TX streamer") ("rx_rate", po::value(&rx_rate), "specify to perform a RX rate test (sps)") ("tx_rate", po::value(&tx_rate), "specify to perform a TX rate test (sps)") ("rx_spp", po::value(&rx_spp), "samples/packet value for RX") ("tx_spp", po::value(&tx_spp), "samples/packet value for TX") ("rx_otw", po::value(&rx_otw)->default_value("sc16"), "specify the over-the-wire sample mode for RX") ("tx_otw", po::value(&tx_otw)->default_value("sc16"), "specify the over-the-wire sample mode for TX") ("rx_cpu", po::value(&rx_cpu)->default_value("fc32"), "specify the host/cpu sample mode for RX") ("tx_cpu", po::value(&tx_cpu)->default_value("fc32"), "specify the host/cpu sample mode for TX") ("ref", po::value(&ref), "clock reference (internal, external, mimo, gpsdo)") ("pps", po::value(&pps), "PPS source (internal, external, mimo, gpsdo)") ("random", "Run with random values of samples in send() and recv() to stress-test the I/O.") ("channels", po::value(&channel_list)->default_value("0"), "which channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)") ("rx_channels", po::value(&rx_channel_list), "which RX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)") ("tx_channels", po::value(&tx_channel_list), "which TX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)") ("overrun-threshold", po::value(&overrun_threshold), "Number of overruns (O) which will declare the benchmark a failure.") ("underrun-threshold", po::value(&underrun_threshold), "Number of underruns (U) which will declare the benchmark a failure.") ("drop-threshold", po::value(&drop_threshold), "Number of dropped packets (D) which will declare the benchmark a failure.") ("seq-threshold", po::value(&seq_threshold), "Number of dropped packets (D) which will declare the benchmark a failure.") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help") or (vm.count("rx_rate") + vm.count("tx_rate")) == 0) { std::cout << boost::format("UHD Benchmark Rate %s") % desc << std::endl; std::cout << " Specify --rx_rate for a receive-only test.\n" " Specify --tx_rate for a transmit-only test.\n" " Specify both options for a full-duplex test.\n" << std::endl; return ~0; } // Random number of samples? if (vm.count("random")) { std::cout << "Using random number of samples in send() and recv() calls." << std::endl; random_nsamps = true; } // create a usrp device std::cout << std::endl; uhd::device_addrs_t device_addrs = uhd::device::find(args, uhd::device::USRP); if (not device_addrs.empty() and device_addrs.at(0).get("type", "") == "usrp1") { std::cerr << "*** Warning! ***" << std::endl; std::cerr << "Benchmark results will be inaccurate on USRP1 due to insufficient " "features.\n" << std::endl; } // "use_dpdk" must be specified in the device args for proper performance during streaming with dpdk if (args.find("use_dpdk") != std::string::npos) { set_realtime_priority = true; } start_time_type start_time(std::chrono::steady_clock::now()); std::cout << boost::format("[%s] Creating the usrp device with: %s...") % NOW() % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); // always select the subdevice first, the channel mapping affects the other settings if (vm.count("rx_subdev")) { usrp->set_rx_subdev_spec(rx_subdev); } if (vm.count("tx_subdev")) { usrp->set_tx_subdev_spec(tx_subdev); } std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; int num_mboards = usrp->get_num_mboards(); boost::thread_group thread_group; if (vm.count("ref")) { if (ref == "mimo") { if (num_mboards != 2) { std::cerr << "ERROR: ref = \"mimo\" implies 2 motherboards; your system has " << num_mboards << " boards" << std::endl; return -1; } usrp->set_clock_source("mimo", 1); } else { usrp->set_clock_source(ref); } if (ref != "internal") { std::cout << "Now confirming lock on clock signals..." << std::endl; bool is_locked = false; auto end_time = std::chrono::steady_clock::now() + CLOCK_TIMEOUT; for (int i = 0; i < num_mboards; i++) { if (ref == "mimo" and i == 0) continue; while ((is_locked = usrp->get_mboard_sensor("ref_locked", i).to_bool()) == false and std::chrono::steady_clock::now() < end_time) { std::this_thread::sleep_for(1ms); } if (is_locked == false) { std::cerr << "ERROR: Unable to confirm clock signal locked on board:" << i << std::endl; return -1; } } } } if (vm.count("pps")) { if (pps == "mimo") { if (num_mboards != 2) { std::cerr << "ERROR: ref = \"mimo\" implies 2 motherboards; your system has " << num_mboards << " boards" << std::endl; return -1; } // make mboard 1 a slave over the MIMO Cable usrp->set_time_source("mimo", 1); } else { usrp->set_time_source(pps); } } // check that the device has sufficient RX and TX channels available std::vector channel_strings; std::vector rx_channel_nums; if (vm.count("rx_rate")) { if (!vm.count("rx_channels")) { rx_channel_list = channel_list; } boost::split(channel_strings, rx_channel_list, boost::is_any_of("\"',")); for (size_t ch = 0; ch < channel_strings.size(); ch++) { size_t chan = std::stoul(channel_strings[ch]); if (chan >= usrp->get_rx_num_channels()) { throw std::runtime_error("Invalid channel(s) specified."); } else { rx_channel_nums.push_back(std::stoul(channel_strings[ch])); } } } std::vector tx_channel_nums; if (vm.count("tx_rate")) { if (!vm.count("tx_channels")) { tx_channel_list = channel_list; } boost::split(channel_strings, tx_channel_list, boost::is_any_of("\"',")); for (size_t ch = 0; ch < channel_strings.size(); ch++) { size_t chan = std::stoul(channel_strings[ch]); if (chan >= usrp->get_tx_num_channels()) { throw std::runtime_error("Invalid channel(s) specified."); } else { tx_channel_nums.push_back(std::stoul(channel_strings[ch])); } } } std::cout << boost::format("[%s] Setting device timestamp to 0...") % NOW() << std::endl; if (pps == "mimo" or ref == "mimo") { // only set the master's time, the slave's is automatically sync'd usrp->set_time_now(uhd::time_spec_t(0.0), 0); // ensure that the setter has completed usrp->get_time_now(); // wait for the time to sync std::this_thread::sleep_for(std::chrono::milliseconds(1)); } else if (rx_channel_nums.size() > 1 or tx_channel_nums.size() > 1) { usrp->set_time_unknown_pps(uhd::time_spec_t(0.0)); } else { usrp->set_time_now(0.0); } // spawn the receive test thread if (vm.count("rx_rate")) { usrp->set_rx_rate(rx_rate); if (vm.count("rx_spp")) { std::cout << "Setting RX spp to " << rx_spp << std::endl; usrp->set_rx_spp(rx_spp); } // create a receive streamer uhd::stream_args_t stream_args(rx_cpu, rx_otw); stream_args.channels = rx_channel_nums; stream_args.args = uhd::device_addr_t(rx_stream_args); uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); auto rx_thread = thread_group.create_thread([=, &burst_timer_elapsed]() { benchmark_rx_rate( usrp, rx_cpu, rx_stream, random_nsamps, start_time, burst_timer_elapsed); }); uhd::set_thread_name(rx_thread, "bmark_rx_stream"); } // spawn the transmit test thread if (vm.count("tx_rate")) { usrp->set_tx_rate(tx_rate); // create a transmit streamer uhd::stream_args_t stream_args(tx_cpu, tx_otw); stream_args.channels = tx_channel_nums; stream_args.args = uhd::device_addr_t(tx_stream_args); uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); const size_t max_spp = tx_stream->get_max_num_samps(); size_t spp = max_spp; if (vm.count("tx_spp")) { spp = std::min(spp, tx_spp); } std::cout << "Setting TX spp to " << spp << std::endl; auto tx_thread = thread_group.create_thread([=, &burst_timer_elapsed]() { benchmark_tx_rate(usrp, tx_cpu, tx_stream, burst_timer_elapsed, start_time, spp, random_nsamps); }); uhd::set_thread_name(tx_thread, "bmark_tx_stream"); auto tx_async_thread = thread_group.create_thread([=, &burst_timer_elapsed]() { benchmark_tx_rate_async_helper(tx_stream, start_time, burst_timer_elapsed); }); uhd::set_thread_name(tx_async_thread, "bmark_tx_helper"); } // sleep for the required duration if (rx_channel_nums.size() > 1 or tx_channel_nums.size() > 1) { // If we have multiple channels, we need to account for the INIT_DELAY in order to // send/receive the proper number of samples. duration += INIT_DELAY; } const int64_t secs = int64_t(duration); const int64_t usecs = int64_t((duration - secs) * 1e6); std::this_thread::sleep_for( std::chrono::seconds(secs) + std::chrono::microseconds(usecs)); // interrupt and join the threads burst_timer_elapsed = true; thread_group.join_all(); std::cout << "[" << NOW() << "] Benchmark complete." << std::endl << std::endl; // print summary const std::string threshold_err(" ERROR: Exceeds threshold!"); const bool overrun_threshold_err = vm.count("overrun-threshold") and num_overruns > overrun_threshold; const bool underrun_threshold_err = vm.count("underrun-threshold") and num_underruns > underrun_threshold; const bool drop_threshold_err = vm.count("drop-threshold") and num_seqrx_errors > drop_threshold; const bool seq_threshold_err = vm.count("seq-threshold") and num_seq_errors > seq_threshold; std::cout << std::endl << boost::format("Benchmark rate summary:\n" " Num received samples: %u\n" " Num dropped samples: %u\n" " Num overruns detected: %u\n" " Num transmitted samples: %u\n" " Num sequence errors (Tx): %u\n" " Num sequence errors (Rx): %u\n" " Num underruns detected: %u\n" " Num late commands: %u\n" " Num timeouts (Tx): %u\n" " Num timeouts (Rx): %u\n") % num_rx_samps % num_dropped_samps % num_overruns % num_tx_samps % num_seq_errors % num_seqrx_errors % num_underruns % num_late_commands % num_timeouts_tx % num_timeouts_rx << std::endl; // finished std::cout << std::endl << "Done!" << std::endl << std::endl; if (overrun_threshold_err || underrun_threshold_err || drop_threshold_err || seq_threshold_err) { std::cout << "The following error thresholds were exceeded:\n"; if (overrun_threshold_err) { std::cout << boost::format(" * Overruns (%d/%d)") % num_overruns % overrun_threshold << std::endl; } if (underrun_threshold_err) { std::cout << boost::format(" * Underruns (%d/%d)") % num_underruns % underrun_threshold << std::endl; } if (drop_threshold_err) { std::cout << boost::format(" * Dropped packets (RX) (%d/%d)") % num_seqrx_errors % drop_threshold << std::endl; } if (seq_threshold_err) { std::cout << boost::format(" * Dropped packets (TX) (%d/%d)") % num_seq_errors % seq_threshold << std::endl; } return EXIT_FAILURE; } return EXIT_SUCCESS; }