// // Copyright 2010 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #ifndef ASCII_ART_DFT_HPP #define ASCII_ART_DFT_HPP #include <complex> #include <cstddef> #include <stdexcept> #include <string> #include <vector> namespace ascii_art_dft { //! Type produced by the log power DFT function typedef std::vector<float> log_pwr_dft_type; /*! * Get a logarithmic power DFT of the input samples. * Samples are expected to be in the range [-1.0, 1.0]. * \param samps a pointer to an array of complex samples * \param nsamps the number of samples in the array * \return a real range of DFT bins in units of dB */ template <typename T> log_pwr_dft_type log_pwr_dft(const std::complex<T>* samps, size_t nsamps); /*! * Convert a DFT to a piroundable ascii plot. * \param dft the log power dft bins * \param width the frame width in characters * \param height the frame height in characters * \param samp_rate the sample rate in Sps * \param dc_freq the DC frequency in Hz * \param dyn_rng the dynamic range in dB * \param ref_lvl the reference level in dB * \return the plot as an ascii string */ std::string dft_to_plot(const log_pwr_dft_type& dft, size_t width, size_t height, double samp_rate, double dc_freq, float dyn_rng, float ref_lvl); } // namespace ascii_art_dft /*********************************************************************** * Implementation includes **********************************************************************/ #include <algorithm> #include <cmath> #include <sstream> /*********************************************************************** * Helper functions **********************************************************************/ namespace { /*anon*/ static const double pi = double(std::acos(-1.0)); //! Round a floating-point value to the nearest integer template <typename T> int iround(T val) { return (val > 0) ? int(val + 0.5) : int(val - 0.5); } //! Pick the closest number that is nice to display template <typename T> T to_clean_num(const T num) { if (num == 0) return 0; const T pow10 = std::pow(T(10), int(std::floor(std::log10(std::abs(num))))); const T norm = std::abs(num) / pow10; static const int cleans[] = {1, 2, 5, 10}; int clean = cleans[0]; for (size_t i = 1; i < sizeof(cleans) / sizeof(cleans[0]); i++) { if (std::abs(norm - cleans[i]) < std::abs(norm - clean)) clean = cleans[i]; } return ((num < 0) ? -1 : 1) * clean * pow10; } //! Compute an FFT with pre-computed factors using Cooley-Tukey template <typename T> std::complex<T> ct_fft_f(const std::complex<T>* samps, size_t nsamps, const std::complex<T>* factors, size_t start = 0, size_t step = 1) { if (nsamps == 1) return samps[start]; std::complex<T> E_k = ct_fft_f(samps, nsamps / 2, factors + 1, start, step * 2); std::complex<T> O_k = ct_fft_f(samps, nsamps / 2, factors + 1, start + step, step * 2); return E_k + factors[0] * O_k; } //! Compute an FFT for a particular bin k using Cooley-Tukey template <typename T> std::complex<T> ct_fft_k(const std::complex<T>* samps, size_t nsamps, size_t k) { // pre-compute the factors to use in Cooley-Tukey std::vector<std::complex<T>> factors; for (size_t N = nsamps; N != 0; N /= 2) { factors.push_back(std::exp(std::complex<T>(0, T(-2 * pi * k / N)))); } return ct_fft_f(samps, nsamps, &factors.front()); } //! Helper class to build a DFT plot frame class frame_type { public: frame_type(size_t width, size_t height) : _frame(width - 1, std::vector<char>(height, ' ')) { /* NOP */ } // accessors to parts of the frame char& get_plot(size_t b, size_t z) { return _frame.at(b + albl_w).at(z + flbl_h); } char& get_albl(size_t b, size_t z) { return _frame.at(b).at(z + flbl_h); } char& get_ulbl(size_t b) { return _frame.at(b).at(flbl_h - 1); } char& get_flbl(size_t b) { return _frame.at(b + albl_w).at(flbl_h - 1); } // dimension accessors size_t get_plot_h(void) const { return _frame.front().size() - flbl_h; } size_t get_plot_w(void) const { return _frame.size() - albl_w; } size_t get_albl_w(void) const { return albl_w; } std::string to_string(void) { std::stringstream frame_ss; for (size_t z = 0; z < _frame.front().size(); z++) { for (size_t b = 0; b < _frame.size(); b++) { frame_ss << _frame[b][_frame[b].size() - z - 1]; } frame_ss << std::endl; } return frame_ss.str(); } private: static const size_t albl_w = 6, flbl_h = 1; std::vector<std::vector<char>> _frame; }; } // namespace /*********************************************************************** * Implementation code **********************************************************************/ namespace ascii_art_dft { //! skip constants for amplitude and frequency labels static const size_t albl_skip = 5, flbl_skip = 20; template <typename T> log_pwr_dft_type log_pwr_dft(const std::complex<T>* samps, size_t nsamps) { if (nsamps & (nsamps - 1)) throw std::runtime_error("num samps is not a power of 2"); // compute the window double win_pwr = 0; std::vector<std::complex<T>> win_samps; for (size_t n = 0; n < nsamps; n++) { // double w_n = 1; // double w_n = 0.54 //hamming window // -0.46*std::cos(2*pi*n/(nsamps-1)) //; double w_n = 0.35875 // blackman-harris window - 0.48829 * std::cos(2 * pi * n / (nsamps - 1)) + 0.14128 * std::cos(4 * pi * n / (nsamps - 1)) - 0.01168 * std::cos(6 * pi * n / (nsamps - 1)); // double w_n = 1 // flat top window // -1.930*std::cos(2*pi*n/(nsamps-1)) // +1.290*std::cos(4*pi*n/(nsamps-1)) // -0.388*std::cos(6*pi*n/(nsamps-1)) // +0.032*std::cos(8*pi*n/(nsamps-1)) //; win_samps.push_back(T(w_n) * samps[n]); win_pwr += w_n * w_n; } // compute the log-power dft log_pwr_dft_type log_pwr_dft; for (size_t k = 0; k < nsamps; k++) { std::complex<T> dft_k = ct_fft_k(&win_samps.front(), nsamps, k); log_pwr_dft.push_back( float(+20 * std::log10(std::abs(dft_k)) - 20 * std::log10(T(nsamps)) - 10 * std::log10(win_pwr / nsamps) + 3)); } return log_pwr_dft; } std::string dft_to_plot(const log_pwr_dft_type& dft_, size_t width, size_t height, double samp_rate, double dc_freq, float dyn_rng, float ref_lvl) { if (dyn_rng <= 0.0) { throw std::runtime_error("dyn_rng must be greater than zero in dft_to_plot"); } frame_type frame(width, height); // fill this frame // re-order the dft so dc in in the center const size_t num_bins = dft_.size() - 1 + dft_.size() % 2; // make it odd log_pwr_dft_type dft(num_bins); for (size_t n = 0; n < num_bins; n++) { dft[n] = dft_[(n + num_bins / 2) % num_bins]; } // fill the plot with dft bins for (size_t b = 0; b < frame.get_plot_w(); b++) { // indexes from the dft to grab for the plot const size_t n_start = std::max( iround(double(b - 0.5) * (num_bins - 1) / (frame.get_plot_w() - 1)), 0); const size_t n_stop = std::min(iround(double(b + 0.5) * (num_bins - 1) / (frame.get_plot_w() - 1)), int(num_bins)); // calculate val as the max across points float val = dft.at(n_start); for (size_t n = n_start; n < n_stop; n++) val = std::max(val, dft.at(n)); const float scaled = (val - (ref_lvl - dyn_rng)) * (frame.get_plot_h() - 1) / dyn_rng; for (size_t z = 0; z < frame.get_plot_h(); z++) { static const std::string syms(".:!|"); if (scaled - z >= 1) frame.get_plot(b, z) = syms.at(syms.size() - 1); else if (scaled - z > 0) frame.get_plot(b, z) = syms.at(size_t((scaled - z) * syms.size())); } } // create vertical amplitude labels const float db_step = to_clean_num(dyn_rng / (frame.get_plot_h() - 1) * albl_skip); for (float db = db_step * (int((ref_lvl - dyn_rng) / db_step)); db <= db_step * (int(ref_lvl / db_step)); db += db_step) { const int z = iround((db - (ref_lvl - dyn_rng)) * (frame.get_plot_h() - 1) / dyn_rng); if (z < 0 or size_t(z) >= frame.get_plot_h()) continue; std::stringstream ss; ss << db; std::string lbl = ss.str(); for (size_t i = 0; i < lbl.size() and i < frame.get_albl_w(); i++) { frame.get_albl(i, z) = lbl[i]; } } // create vertical units label std::string ulbl = "dBfs"; for (size_t i = 0; i < ulbl.size(); i++) { frame.get_ulbl(i + 1) = ulbl[i]; } // create horizontal frequency labels const double f_step = to_clean_num(samp_rate / frame.get_plot_w() * flbl_skip); for (double freq = f_step * int((-samp_rate / 2 / f_step)); freq <= f_step * int((+samp_rate / 2 / f_step)); freq += f_step) { const int b = iround((freq + samp_rate / 2) * (frame.get_plot_w() - 1) / samp_rate); std::stringstream ss; ss << (freq + dc_freq) / 1e6 << "MHz"; std::string lbl = ss.str(); if (b < int(lbl.size() / 2) or b + lbl.size() - lbl.size() / 2 >= frame.get_plot_w()) continue; for (size_t i = 0; i < lbl.size(); i++) { frame.get_flbl(b + i - lbl.size() / 2) = lbl[i]; } } return frame.to_string(); } } // namespace ascii_art_dft /* //example main function to test the dft #include <curses.h> #include <cstdlib> #include <iostream> #include <thread> #include <chrono> int main(void){ using namespace std::chrono_literals; initscr(); while (true){ clear(); std::vector<std::complex<float> > samples; for(size_t i = 0; i < 512; i++){ samples.push_back(std::complex<float>( float(std::rand() - RAND_MAX/2)/(RAND_MAX)/4, float(std::rand() - RAND_MAX/2)/(RAND_MAX)/4 )); samples[i] += 0.5*std::sin(i*3.14/2) + 0.7; } ascii_art_dft::log_pwr_dft_type dft; dft = ascii_art_dft::log_pwr_dft(&samples.front(), samples.size()); printw("%s", ascii_art_dft::dft_to_plot( dft, COLS, LINES, 12.5e4, 2.45e9, 60, 0 ).c_str()); refresh(); std::this_thread::sleep_for(1s); } endwin(); std::cout << "here\n"; return 0; } */ #endif /*ASCII_ART_DFT_HPP*/