// // Copyright 2010 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #ifndef ASCII_ART_DFT_HPP #define ASCII_ART_DFT_HPP #include <string> #include <cstddef> #include <vector> #include <complex> #include <stdexcept> namespace ascii_art_dft{ //! Type produced by the log power DFT function typedef std::vector<float> log_pwr_dft_type; /*! * Get a logarithmic power DFT of the input samples. * Samples are expected to be in the range [-1.0, 1.0]. * \param samps a pointer to an array of complex samples * \param nsamps the number of samples in the array * \return a real range of DFT bins in units of dB */ template <typename T> log_pwr_dft_type log_pwr_dft( const std::complex<T> *samps, size_t nsamps ); /*! * Convert a DFT to a piroundable ascii plot. * \param dft the log power dft bins * \param width the frame width in characters * \param height the frame height in characters * \param samp_rate the sample rate in Sps * \param dc_freq the DC frequency in Hz * \param dyn_rng the dynamic range in dB * \param ref_lvl the reference level in dB * \return the plot as an ascii string */ std::string dft_to_plot( const log_pwr_dft_type &dft, size_t width, size_t height, double samp_rate, double dc_freq, float dyn_rng, float ref_lvl ); } //namespace ascii_dft /*********************************************************************** * Implementation includes **********************************************************************/ #include <cmath> #include <sstream> #include <algorithm> /*********************************************************************** * Helper functions **********************************************************************/ namespace {/*anon*/ static const double pi = double(std::acos(-1.0)); //! Round a floating-point value to the nearest integer template <typename T> int iround(T val){ return (val > 0)? int(val + 0.5) : int(val - 0.5); } //! Pick the closest number that is nice to display template <typename T> T to_clean_num(const T num){ if (num == 0) return 0; const T pow10 = std::pow(T(10), int(std::floor(std::log10(std::abs(num))))); const T norm = std::abs(num)/pow10; static const int cleans[] = {1, 2, 5, 10}; int clean = cleans[0]; for (size_t i = 1; i < sizeof(cleans)/sizeof(cleans[0]); i++){ if (std::abs(norm - cleans[i]) < std::abs(norm - clean)) clean = cleans[i]; } return ((num < 0)? -1 : 1)*clean*pow10; } //! Compute an FFT with pre-computed factors using Cooley-Tukey template <typename T> std::complex<T> ct_fft_f( const std::complex<T> *samps, size_t nsamps, const std::complex<T> *factors, size_t start = 0, size_t step = 1 ){ if (nsamps == 1) return samps[start]; std::complex<T> E_k = ct_fft_f(samps, nsamps/2, factors+1, start, step*2); std::complex<T> O_k = ct_fft_f(samps, nsamps/2, factors+1, start+step, step*2); return E_k + factors[0]*O_k; } //! Compute an FFT for a particular bin k using Cooley-Tukey template <typename T> std::complex<T> ct_fft_k( const std::complex<T> *samps, size_t nsamps, size_t k ){ //pre-compute the factors to use in Cooley-Tukey std::vector<std::complex<T> > factors; for (size_t N = nsamps; N != 0; N /= 2){ factors.push_back(std::exp(std::complex<T>(0, T(-2*pi*k/N)))); } return ct_fft_f(samps, nsamps, &factors.front()); } //! Helper class to build a DFT plot frame class frame_type{ public: frame_type(size_t width, size_t height): _frame(width-1, std::vector<char>(height, ' ')) { /* NOP */ } //accessors to parts of the frame char &get_plot(size_t b, size_t z){return _frame.at(b+albl_w).at(z+flbl_h);} char &get_albl(size_t b, size_t z){return _frame.at(b) .at(z+flbl_h);} char &get_ulbl(size_t b) {return _frame.at(b) .at(flbl_h-1);} char &get_flbl(size_t b) {return _frame.at(b+albl_w).at(flbl_h-1);} //dimension accessors size_t get_plot_h(void) const{return _frame.front().size() - flbl_h;} size_t get_plot_w(void) const{return _frame.size() - albl_w;} size_t get_albl_w(void) const{return albl_w;} std::string to_string(void){ std::stringstream frame_ss; for (size_t z = 0; z < _frame.front().size(); z++){ for (size_t b = 0; b < _frame.size(); b++){ frame_ss << _frame[b][_frame[b].size()-z-1]; } frame_ss << std::endl; } return frame_ss.str(); } private: static const size_t albl_w = 6, flbl_h = 1; std::vector<std::vector<char> > _frame; }; } //namespace /*anon*/ /*********************************************************************** * Implementation code **********************************************************************/ namespace ascii_art_dft{ //! skip constants for amplitude and frequency labels static const size_t albl_skip = 5, flbl_skip = 20; template <typename T> log_pwr_dft_type log_pwr_dft( const std::complex<T> *samps, size_t nsamps ){ if (nsamps & (nsamps - 1)) throw std::runtime_error("num samps is not a power of 2"); //compute the window double win_pwr = 0; std::vector<std::complex<T> > win_samps; for(size_t n = 0; n < nsamps; n++){ //double w_n = 1; //double w_n = 0.54 //hamming window // -0.46*std::cos(2*pi*n/(nsamps-1)) //; double w_n = 0.35875 //blackman-harris window -0.48829*std::cos(2*pi*n/(nsamps-1)) +0.14128*std::cos(4*pi*n/(nsamps-1)) -0.01168*std::cos(6*pi*n/(nsamps-1)) ; //double w_n = 1 // flat top window // -1.930*std::cos(2*pi*n/(nsamps-1)) // +1.290*std::cos(4*pi*n/(nsamps-1)) // -0.388*std::cos(6*pi*n/(nsamps-1)) // +0.032*std::cos(8*pi*n/(nsamps-1)) //; win_samps.push_back(T(w_n)*samps[n]); win_pwr += w_n*w_n; } //compute the log-power dft log_pwr_dft_type log_pwr_dft; for(size_t k = 0; k < nsamps; k++){ std::complex<T> dft_k = ct_fft_k(&win_samps.front(), nsamps, k); log_pwr_dft.push_back(float( + 20*std::log10(std::abs(dft_k)) - 20*std::log10(T(nsamps)) - 10*std::log10(win_pwr/nsamps) + 3 )); } return log_pwr_dft; } std::string dft_to_plot( const log_pwr_dft_type &dft_, size_t width, size_t height, double samp_rate, double dc_freq, float dyn_rng, float ref_lvl ){ frame_type frame(width, height); //fill this frame //re-order the dft so dc in in the center const size_t num_bins = dft_.size() - 1 + dft_.size()%2; //make it odd log_pwr_dft_type dft(num_bins); for (size_t n = 0; n < num_bins; n++){ dft[n] = dft_[(n + num_bins/2)%num_bins]; } //fill the plot with dft bins for (size_t b = 0; b < frame.get_plot_w(); b++){ //indexes from the dft to grab for the plot const size_t n_start = std::max(iround(double(b-0.5)*(num_bins-1)/(frame.get_plot_w()-1)), 0); const size_t n_stop = std::min(iround(double(b+0.5)*(num_bins-1)/(frame.get_plot_w()-1)), int(num_bins)); //calculate val as the max across points float val = dft.at(n_start); for (size_t n = n_start; n < n_stop; n++) val = std::max(val, dft.at(n)); const float scaled = (val - (ref_lvl - dyn_rng))*(frame.get_plot_h()-1)/dyn_rng; for (size_t z = 0; z < frame.get_plot_h(); z++){ static const std::string syms(".:!|"); if (scaled-z > 1) frame.get_plot(b, z) = syms.at(syms.size()-1); else if (scaled-z > 0) frame.get_plot(b, z) = syms.at(size_t((scaled-z)*syms.size())); } } //create vertical amplitude labels const float db_step = to_clean_num(dyn_rng/(frame.get_plot_h()-1)*albl_skip); for ( float db = db_step*(int((ref_lvl - dyn_rng)/db_step)); db <= db_step*(int(ref_lvl/db_step)); db += db_step ){ const int z = iround((db - (ref_lvl - dyn_rng))*(frame.get_plot_h()-1)/dyn_rng); if (z < 0 or size_t(z) >= frame.get_plot_h()) continue; std::stringstream ss; ss << db; std::string lbl = ss.str(); for (size_t i = 0; i < lbl.size() and i < frame.get_albl_w(); i++){ frame.get_albl(i, z) = lbl[i]; } } //create vertical units label std::string ulbl = "dBfs"; for (size_t i = 0; i < ulbl.size(); i++){ frame.get_ulbl(i+1) = ulbl[i]; } //create horizontal frequency labels const double f_step = to_clean_num(samp_rate/frame.get_plot_w()*flbl_skip); for ( double freq = f_step*int((-samp_rate/2/f_step)); freq <= f_step*int((+samp_rate/2/f_step)); freq += f_step ){ const int b = iround((freq + samp_rate/2)*(frame.get_plot_w()-1)/samp_rate); std::stringstream ss; ss << (freq+dc_freq)/1e6 << "MHz"; std::string lbl = ss.str(); if (b < int(lbl.size()/2) or b + lbl.size() - lbl.size()/2 >= frame.get_plot_w()) continue; for (size_t i = 0; i < lbl.size(); i++){ frame.get_flbl(b + i - lbl.size()/2) = lbl[i]; } } return frame.to_string(); } } //namespace ascii_dft #endif /*ASCII_ART_DFT_HPP*/ /* //example main function to test the dft #include <iostream> #include <cstdlib> #include <curses.h> int main(void){ initscr(); while (true){ clear(); std::vector<std::complex<float> > samples; for(size_t i = 0; i < 512; i++){ samples.push_back(std::complex<float>( float(std::rand() - RAND_MAX/2)/(RAND_MAX)/4, float(std::rand() - RAND_MAX/2)/(RAND_MAX)/4 )); samples[i] += 0.5*std::sin(i*3.14/2) + 0.7; } ascii_art_dft::log_pwr_dft_type dft; dft = ascii_art_dft::log_pwr_dft(&samples.front(), samples.size()); printw("%s", ascii_art_dft::dft_to_plot( dft, COLS, LINES, 12.5e4, 2.45e9, 60, 0 ).c_str()); sleep(1); } endwin(); std::cout << "here\n"; return 0; } */