// // Copyright 2021 Ettus Research, A National Instruments Brand // // SPDX-License-Identifier: LGPL-3.0-or-later // // Module: x4xx // // Description: Top-level module for X410 devices. // `default_nettype none module x4xx ( //----------------------------------- // RF block signals //----------------------------------- // Clocking and sync input wire SYSREF_RF_P, input wire SYSREF_RF_N, input wire [3:0] ADC_CLK_P, input wire [3:0] ADC_CLK_N, input wire [1:0] DAC_CLK_P, input wire [1:0] DAC_CLK_N, // Analog ports input wire [1:0] DB0_RX_P, input wire [1:0] DB0_RX_N, input wire [1:0] DB1_RX_P, input wire [1:0] DB1_RX_N, output wire [1:0] DB0_TX_P, output wire [1:0] DB0_TX_N, output wire [1:0] DB1_TX_P, output wire [1:0] DB1_TX_N, //----------------------------------- // MGTs (Quad 128-131) //----------------------------------- // // Quad | Connector // Bank 128 | QSFP28 (1) // Bank 129 | iPass+zHD (1) // Bank 130 | iPass+zHD (0) // Bank 131 | QSFP28 (0) // //----------------------------------- // Clock references input wire MGT_REFCLK_LMK0_P, input wire MGT_REFCLK_LMK0_N, input wire MGT_REFCLK_LMK1_P, input wire MGT_REFCLK_LMK1_N, input wire MGT_REFCLK_LMK2_P, input wire MGT_REFCLK_LMK2_N, input wire MGT_REFCLK_LMK3_P, input wire MGT_REFCLK_LMK3_N, // Quad 128 transceivers: QSFP28 (1) `ifdef QSFP1_0 input wire QSFP1_0_RX_P, input wire QSFP1_0_RX_N, output wire QSFP1_0_TX_P, output wire QSFP1_0_TX_N, `endif `ifdef QSFP1_1 input wire QSFP1_1_RX_P, input wire QSFP1_1_RX_N, output wire QSFP1_1_TX_P, output wire QSFP1_1_TX_N, `endif `ifdef QSFP1_2 input wire QSFP1_2_RX_P, input wire QSFP1_2_RX_N, output wire QSFP1_2_TX_P, output wire QSFP1_2_TX_N, `endif `ifdef QSFP1_3 input wire QSFP1_3_RX_P, input wire QSFP1_3_RX_N, output wire QSFP1_3_TX_P, output wire QSFP1_3_TX_N, `endif // Quad 129 transceivers: iPass+zHD (1) `ifdef IPASS1_LANES input wire [`IPASS1_LANES-1:0] IPASS1_RX_P, input wire [`IPASS1_LANES-1:0] IPASS1_RX_N, output wire [`IPASS1_LANES-1:0] IPASS1_TX_P, output wire [`IPASS1_LANES-1:0] IPASS1_TX_N, `endif // Quad 130 transceivers: iPass+zHD (0) `ifdef IPASS0_LANES input wire [`IPASS0_LANES-1:0] IPASS0_RX_P, input wire [`IPASS0_LANES-1:0] IPASS0_RX_N, output wire [`IPASS0_LANES-1:0] IPASS0_TX_P, output wire [`IPASS0_LANES-1:0] IPASS0_TX_N, `endif // Quad 131 transceivers: QSFP28 (0) `ifdef QSFP0_0 input wire QSFP0_0_RX_P, input wire QSFP0_0_RX_N, output wire QSFP0_0_TX_P, output wire QSFP0_0_TX_N, `endif `ifdef QSFP0_1 input wire QSFP0_1_RX_P, input wire QSFP0_1_RX_N, output wire QSFP0_1_TX_P, output wire QSFP0_1_TX_N, `endif `ifdef QSFP0_2 input wire QSFP0_2_RX_P, input wire QSFP0_2_RX_N, output wire QSFP0_2_TX_P, output wire QSFP0_2_TX_N, `endif `ifdef QSFP0_3 input wire QSFP0_3_RX_P, input wire QSFP0_3_RX_N, output wire QSFP0_3_TX_P, output wire QSFP0_3_TX_N, `endif //----------------------------------- // HD banks //----------------------------------- inout wire [19:0] DB0_GPIO, output wire DB0_SYNTH_SYNC, inout wire [19:0] DB1_GPIO, output wire DB1_SYNTH_SYNC, output wire LMK_SYNC, input wire PPS_IN, output wire PL_CPLD_SCLK, // Dual-purpose CPLD JTAG TCK output wire PL_CPLD_MOSI, // Dual-purpose CPLD JTAG TDI input wire PL_CPLD_MISO, // Dual-purpose CPLD JTAG TDO //----------------------------------- // eCPRI //----------------------------------- input wire FPGA_AUX_REF, `ifdef QSFP1_0 output wire GTY_RCV_CLK_P, output wire GTY_RCV_CLK_N, `endif output wire FABRIC_CLK_OUT_P, output wire FABRIC_CLK_OUT_N, //----------------------------------- // Misc HP banks //----------------------------------- input wire PLL_REFCLK_FPGA_P, input wire PLL_REFCLK_FPGA_N, input wire BASE_REFCLK_FPGA_P, input wire BASE_REFCLK_FPGA_N, input wire SYSREF_FABRIC_P, input wire SYSREF_FABRIC_N, input wire QSFP0_MODPRS_n, output wire QSFP0_RESET_n, output wire QSFP0_LPMODE_n, input wire QSFP1_MODPRS_n, output wire QSFP1_RESET_n, output wire QSFP1_LPMODE_n, inout wire [11:0] DIOA_FPGA, inout wire [11:0] DIOB_FPGA, output wire CPLD_JTAG_OE_n, output wire PPS_LED, inout wire TRIG_IO, output wire PL_CPLD_JTAGEN, output wire PL_CPLD_CS0_n, // Dual-purpose CPLD JTAG TMS output wire PL_CPLD_CS1_n //----------------------------------- // Unused pins //----------------------------------- // DRAM Controller 0 // input wire DRAM0_REFCLK_P, // input wire DRAM0_REFCLK_N, // output wire DRAM0_ACT_n, // output wire [16:0] DRAM0_ADDR, // output wire [ 1:0] DRAM0_BA, // output wire [ 0:0] DRAM0_BG, // output wire [ 0:0] DRAM0_CKE, // output wire [ 0:0] DRAM0_ODT, // output wire [ 0:0] DRAM0_CS_n, // output wire [ 0:0] DRAM0_CLK_P, // output wire [ 0:0] DRAM0_CLK_N, // output wire DRAM0_RESET_n, // inout wire [ 7:0] DRAM0_DM_n, // inout wire [63:0] DRAM0_DQ, // inout wire [ 7:0] DRAM0_DQS_p, // inout wire [ 7:0] DRAM0_DQS_n, // DRAM Controller 1 // input wire DRAM1_REFCLK_P, // input wire DRAM1_REFCLK_N, // output wire DRAM1_ACT_n, // output wire [16:0] DRAM1_ADDR, // output wire [ 1:0] DRAM1_BA, // output wire [ 0:0] DRAM1_BG, // output wire [ 0:0] DRAM1_CKE, // output wire [ 0:0] DRAM1_ODT, // output wire [ 0:0] DRAM1_CS_n, // output wire [ 0:0] DRAM1_CLK_P, // output wire [ 0:0] DRAM1_CLK_N, // output wire DRAM1_RESET_n, // inout wire [ 7:0] DRAM1_DM_n, // inout wire [63:0] DRAM1_DQ, // inout wire [ 7:0] DRAM1_DQS_p, // inout wire [ 7:0] DRAM1_DQS_n, // input wire [1:0] IPASS_SIDEBAND, // input wire PCIE_RESET, // input wire PL_CPLD_IRQ, // output wire FPGA_TEST, // output wire TDC_SPARE_0, // output wire TDC_SPARE_1 ); `include "regmap/global_regs_regmap_utils.vh" `include "regmap/versioning_regs_regmap_utils.vh" `include "regmap/versioning_utils.vh" `include "x4xx_mgt_types.vh" //--------------------------------------------------------------------------- // Build Configuration //--------------------------------------------------------------------------- // Include the RFNoC image core header file `ifdef RFNOC_IMAGE_CORE_HDR `include `"`RFNOC_IMAGE_CORE_HDR`" `else ERROR_RFNOC_IMAGE_CORE_HDR_not_defined(); `define CHDR_WIDTH 64 `define RFNOC_PROTOVER { 8'd1, 8'd0 } `endif // Check the requested bandwidth `ifdef RFBW_100M localparam RF_BANDWIDTH = 100; // RF Bandwidth (MHz) localparam RADIO_SPC = 1; // Number of samples per cycle `elsif RFBW_200M localparam RF_BANDWIDTH = 200; // RF Bandwidth (MHz) localparam RADIO_SPC = 2; // Number of samples per cycle `elsif RFBW_400M localparam RF_BANDWIDTH = 400; // RF Bandwidth (MHz) localparam RADIO_SPC = 4; // Number of samples per cycle `else ERROR_RF_bandwidth_must_be_defined(); localparam RF_BANDWIDTH = 100; // RF Bandwidth (MHz) localparam RADIO_SPC = 1; // Number of samples per cycle `endif // See global_regs_regmap_utils.vh for definition of CHDR_CLK_VALUE. localparam CHDR_CLK_RATE = CHDR_CLK_VALUE[CHDR_CLK_SIZE-1:0]; localparam RFNOC_PROTOVER = `RFNOC_PROTOVER; localparam CHDR_W = `CHDR_WIDTH; localparam CPU_W = 64; localparam REG_AWIDTH = 15; localparam REG_DWIDTH = 32; // Log2 of the maximum transmission unit (MTU) localparam BYTE_MTU = $clog2(8192); // MTU in bytes localparam CHDR_MTU = BYTE_MTU - $clog2(CHDR_W/8); // MTU in CHDR words //--------------------------------------------------------------------------- // Clocks and Resets //--------------------------------------------------------------------------- // Clocking and sync signals for RFDC wire pll_ref_clk_in, pll_ref_clk; wire sysref_pl; wire base_ref_clk; // Buffer the incoming RFDC PLL clock IBUFGDS ibufgds_pll_ref_clk ( .O (pll_ref_clk_in), .I (PLL_REFCLK_FPGA_P), .IB (PLL_REFCLK_FPGA_N) ); assign DB0_SYNTH_SYNC = 1'b0; assign DB1_SYNTH_SYNC = 1'b0; // Buffer the incoming RFDC PL SYSREF IBUFGDS ibufgds_pl_sysref ( .O (sysref_pl), .I (SYSREF_FABRIC_P), .IB (SYSREF_FABRIC_N) ); // Buffer the incoming base reference clock IBUFGDS ibufgds_base_ref_clk ( .O (base_ref_clk), .I (BASE_REFCLK_FPGA_P), .IB (BASE_REFCLK_FPGA_N) ); // Clocking signals for RF data processing/moving wire rfdc_clk, rfdc_clk_2x; wire data_clk; wire data_clk_2x; wire radio_clk; wire radio_clk_2x; // Low-power output clocks from PS to PL wire clk40; // 40.000 MHz wire clk100; // 100.000 MHz wire clk200; // 200.000 MHz // Asynchronous resets from PS to PL wire pl_resetn0; wire areset; assign areset = ~pl_resetn0; // Synchronous resets derived from the reset coming from the PS wire clk40_rst, clk40_rstn; wire clk200_rst, clk200_rstn; wire radio_rst; wire brc_rst; wire prc_rst; reset_sync reset_sync_clk40 ( .clk (clk40), .reset_in (areset), .reset_out (clk40_rst) ); reset_sync reset_sync_clk200 ( .clk (clk200), .reset_in (areset), .reset_out (clk200_rst) ); reset_sync reset_sync_radio ( .clk (radio_clk), .reset_in (areset), .reset_out (radio_rst) ); reset_sync reset_sync_brc ( .clk (base_ref_clk), .reset_in (areset), .reset_out (brc_rst) ); reset_sync reset_sync_prc ( .clk (pll_ref_clk), .reset_in (areset), .reset_out (prc_rst) ); // Invert reset for various modules. assign clk40_rstn = ~clk40_rst; assign clk200_rstn = ~clk200_rst; //--------------------------------------------------------------------------- // PPS Handling //--------------------------------------------------------------------------- wire pps_refclk; wire pps_radioclk; wire [ 1:0] pps_select; wire pll_sync_trigger; wire pll_sync_done; wire [ 7:0] pll_sync_delay; wire [ 7:0] pps_brc_delay; wire [25:0] pps_prc_delay; wire [ 1:0] prc_rc_divider; wire pps_rc_enabled; x4xx_pps_sync x4xx_pps_sync_i ( .base_ref_clk (base_ref_clk), .pll_ref_clk (pll_ref_clk), .ctrl_clk (clk40), .radio_clk (data_clk), .brc_rst (brc_rst), .pps_in (PPS_IN), .pps_out_brc (pps_refclk), .pps_out_rc (pps_radioclk), .sync (LMK_SYNC), .pps_select (pps_select), .pll_sync_trigger (pll_sync_trigger), .pll_sync_delay (pll_sync_delay), .pll_sync_done (pll_sync_done), .pps_brc_delay (pps_brc_delay), .pps_prc_delay (pps_prc_delay), .prc_rc_divider (prc_rc_divider), .pps_rc_enabled (pps_rc_enabled), .debug () ); // IMPORTANT! Trigger I/O tri-sate buffer is controlled through a SW API that // also switches external buffers on the X410 mboard and clocking aux board. // // SW must ensure that any downstream device receiving TRIG_IO ignores or // re-synchronizes after enabling this port. wire [1:0] trig_io_select; assign TRIG_IO = (trig_io_select == TRIG_IO_PPS_OUTPUT) ? pps_refclk : 1'bz; assign PPS_LED = pps_refclk; //--------------------------------------------------------------------------- // Processor System (PS) + RF Data Converter (RFDC) //--------------------------------------------------------------------------- wire [ 48:0] axi_hp0_araddr; wire [ 1:0] axi_hp0_arburst; wire [ 3:0] axi_hp0_arcache; wire [ 5:0] axi_hp0_arid; wire [ 7:0] axi_hp0_arlen; wire axi_hp0_arlock; wire [ 2:0] axi_hp0_arprot; wire [ 3:0] axi_hp0_arqos; wire axi_hp0_arready; wire [ 2:0] axi_hp0_arsize; wire axi_hp0_aruser; wire axi_hp0_arvalid; wire [ 48:0] axi_hp0_awaddr; wire [ 1:0] axi_hp0_awburst; wire [ 3:0] axi_hp0_awcache; wire [ 5:0] axi_hp0_awid; wire [ 7:0] axi_hp0_awlen; wire axi_hp0_awlock; wire [ 2:0] axi_hp0_awprot; wire [ 3:0] axi_hp0_awqos; wire axi_hp0_awready; wire [ 2:0] axi_hp0_awsize; wire axi_hp0_awuser; wire axi_hp0_awvalid; wire axi_hp0_bready; wire [ 1:0] axi_hp0_bresp; wire axi_hp0_bvalid; wire [127:0] axi_hp0_rdata; wire axi_hp0_rlast; wire axi_hp0_rready; wire [ 1:0] axi_hp0_rresp; wire axi_hp0_rvalid; wire [127:0] axi_hp0_wdata; wire axi_hp0_wlast; wire axi_hp0_wready; wire [ 15:0] axi_hp0_wstrb; wire axi_hp0_wvalid; wire [ 48:0] axi_hp1_araddr; wire [ 1:0] axi_hp1_arburst; wire [ 3:0] axi_hp1_arcache; wire [ 5:0] axi_hp1_arid; wire [ 7:0] axi_hp1_arlen; wire axi_hp1_arlock; wire [ 2:0] axi_hp1_arprot; wire [ 3:0] axi_hp1_arqos; wire axi_hp1_arready; wire [ 2:0] axi_hp1_arsize; wire axi_hp1_aruser; wire axi_hp1_arvalid; wire [ 48:0] axi_hp1_awaddr; wire [ 1:0] axi_hp1_awburst; wire [ 3:0] axi_hp1_awcache; wire [ 5:0] axi_hp1_awid; wire [ 7:0] axi_hp1_awlen; wire axi_hp1_awlock; wire [ 2:0] axi_hp1_awprot; wire [ 3:0] axi_hp1_awqos; wire axi_hp1_awready; wire [ 2:0] axi_hp1_awsize; wire axi_hp1_awuser; wire axi_hp1_awvalid; wire axi_hp1_bready; wire [ 1:0] axi_hp1_bresp; wire axi_hp1_bvalid; wire [127:0] axi_hp1_rdata; wire axi_hp1_rlast; wire axi_hp1_rready; wire [ 1:0] axi_hp1_rresp; wire axi_hp1_rvalid; wire [127:0] axi_hp1_wdata; wire axi_hp1_wlast; wire axi_hp1_wready; wire [ 15:0] axi_hp1_wstrb; wire axi_hp1_wvalid; wire [ 39:0] m_axi_app_araddr; wire [ 2:0] m_axi_app_arprot; wire [ 0:0] m_axi_app_arready; wire [ 0:0] m_axi_app_arvalid; wire [ 39:0] m_axi_app_awaddr; wire [ 2:0] m_axi_app_awprot; wire [ 0:0] m_axi_app_awready; wire [ 0:0] m_axi_app_awvalid; wire [ 0:0] m_axi_app_bready; wire [ 1:0] m_axi_app_bresp; wire [ 0:0] m_axi_app_bvalid; wire [ 31:0] m_axi_app_rdata; wire [ 0:0] m_axi_app_rready; wire [ 1:0] m_axi_app_rresp; wire [ 0:0] m_axi_app_rvalid; wire [ 31:0] m_axi_app_wdata; wire [ 0:0] m_axi_app_wready; wire [ 3:0] m_axi_app_wstrb; wire [ 0:0] m_axi_app_wvalid; wire [ 39:0] m_axi_mpm_ep_araddr; wire [ 0:0] m_axi_mpm_ep_arready; wire [ 0:0] m_axi_mpm_ep_arvalid; wire [ 39:0] m_axi_mpm_ep_awaddr; wire [ 0:0] m_axi_mpm_ep_awready; wire [ 0:0] m_axi_mpm_ep_awvalid; wire [ 0:0] m_axi_mpm_ep_bready; wire [ 1:0] m_axi_mpm_ep_bresp; wire [ 0:0] m_axi_mpm_ep_bvalid; wire [ 31:0] m_axi_mpm_ep_rdata; wire [ 0:0] m_axi_mpm_ep_rready; wire [ 1:0] m_axi_mpm_ep_rresp; wire [ 0:0] m_axi_mpm_ep_rvalid; wire [ 31:0] m_axi_mpm_ep_wdata; wire [ 0:0] m_axi_mpm_ep_wready; wire [ 3:0] m_axi_mpm_ep_wstrb; wire [ 0:0] m_axi_mpm_ep_wvalid; wire adc_data_out_resetn_dclk; wire adc_enable_data_rclk; wire adc_rfdc_axi_resetn_rclk; wire dac_data_in_resetn_dclk; wire dac_data_in_resetn_dclk2x; wire dac_data_in_resetn_rclk; wire dac_data_in_resetn_rclk2x; wire fir_resetn_rclk2x; wire [3:0] eth0_link_up, eth0_activity; wire [3:0] eth1_link_up, eth1_activity; wire [31:0] gpio_0_tri_i; wire [31:0] gpio_0_tri_o; // RFDC AXI4-Stream interfaces // // All these signals/vectors are in the rfdc_clk domain. // // ADC: // // I/Q data comes from the RFDC in two vectors: I and Q. Each vector contains // up to 8 SPC depending upon the decimation performed by the RFDC. When // lower data rates are used (higher decimation), the LSBs will contain the // valid samples. The data is packed in each vector as follows: // // ____________ ____________ _ // rfdc_clk _| |____________| |____________| // _ _________________________ _________________________ _ // *_i_tdata _X_i7,i6,i5,i4,i3,i2,i1,i0_X_______i15,...,i8________X_ // _ _________________________ _________________________ _ // *_q_tdata _X_q7,q6,q5,q4,q3,q2,q1,q0_X_______q15,...,q8________X_ // wire [127:0] adc_tile_dout_i_tdata [0:3]; // Up to 8 SPC (I) wire [127:0] adc_tile_dout_q_tdata [0:3]; // Up to 8 SPC (Q) wire [3:0] adc_tile_dout_i_tready; wire [3:0] adc_tile_dout_q_tready; wire [3:0] adc_tile_dout_i_tvalid; wire [3:0] adc_tile_dout_q_tvalid; // // DAC: // // I/Q data is interleaved to the RFDC in a single vector. This vector // contains up to 8 SPC depending upon the interpolation performed by the // RFDC. When lower data rates are used (higher interpolation), valid samples // need to be in the LSBs. The data is packed in the vector as follows: // // ____________ ____________ _ // rfdc_clk _| |____________| |____________| // _ _________________________ _________________________ _ // *_tdata _X__q7,i7,q6,i6,...,q0,i0__X____q15,i15,...,q8,i8____X_ // wire [255:0] dac_tile_din_tdata [0:3]; // Up to 8 SPC (I + Q) wire [3:0] dac_tile_din_tready; wire [3:0] dac_tile_din_tvalid; // Control/status vectors to rf_core (clk40 domain) wire [31:0] rf_dsp_info_clk40; wire [31:0] rf_axi_status_clk40; // Invert controls to rf_core_100m (rfdc_clk_2x domain) wire [7:0] invert_adc_iq_rclk2; wire [7:0] invert_dac_iq_rclk2; // AXI4-Lite control bus in the clk40 domain wire [ 39:0] axi_core_awaddr; wire axi_core_awvalid; wire axi_core_awready; wire [ REG_DWIDTH-1:0] axi_core_wdata; wire [REG_DWIDTH/8-1:0] axi_core_wstrb; wire axi_core_wvalid; wire axi_core_wready; wire [ 1:0] axi_core_bresp; wire axi_core_bvalid; wire axi_core_bready; wire [ 39:0] axi_core_araddr; wire axi_core_arvalid; wire axi_core_arready; wire [ REG_DWIDTH-1:0] axi_core_rdata; wire [ 1:0] axi_core_rresp; wire axi_core_rvalid; wire axi_core_rready; // AXI4-Lite Ethernet internal control bus (clk40 domain) wire [ 39:0] axi_eth_internal_awaddr; wire axi_eth_internal_awvalid; wire axi_eth_internal_awready; wire [ REG_DWIDTH-1:0] axi_eth_internal_wdata; wire [REG_DWIDTH/8-1:0] axi_eth_internal_wstrb; wire axi_eth_internal_wvalid; wire axi_eth_internal_wready; wire [ 1:0] axi_eth_internal_bresp; wire axi_eth_internal_bvalid; wire axi_eth_internal_bready; wire [ 39:0] axi_eth_internal_araddr; wire axi_eth_internal_arvalid; wire axi_eth_internal_arready; wire [ REG_DWIDTH-1:0] axi_eth_internal_rdata; wire [ 1:0] axi_eth_internal_rresp; wire axi_eth_internal_rvalid; wire axi_eth_internal_rready; // Internal Ethernet xport adapter to PS (clk200 domain) wire [63:0] e2h_dma_tdata; wire [ 7:0] e2h_dma_tkeep; wire e2h_dma_tlast; wire e2h_dma_tready; wire e2h_dma_tvalid; wire [63:0] h2e_dma_tdata; wire [ 7:0] h2e_dma_tkeep; wire h2e_dma_tlast; wire h2e_dma_tready; wire h2e_dma_tvalid; wire [3:0] eth0_rx_irq; wire [3:0] eth0_tx_irq; wire [3:0] eth1_rx_irq; wire [3:0] eth1_tx_irq; // RF reset control wire nco_reset_done; wire start_nco_reset; wire adc_reset_pulse; wire dac_reset_pulse; // Rear panel LEDs control // // Each LED is comprised of a green (LSB) and a red (MSB) LED which the user // can control through a 2-bit vector once fabric LED control is configured // on the X410's Linux shell. localparam LED_OFF = 2'b00; localparam LED_GREEN = 2'b01; localparam LED_RED = 2'b10; localparam LED_AMBER = 2'b11; wire [1:0] user_led_ctrl [0:2]; assign user_led_ctrl[0] = LED_GREEN; assign user_led_ctrl[1] = LED_RED; assign user_led_ctrl[2] = LED_AMBER; // Unused AXI signals assign axi_hp0_arid = 0; assign axi_hp0_aruser = 0; assign axi_hp0_awid = 0; assign axi_hp0_awuser = 0; assign axi_hp1_arid = 0; assign axi_hp1_aruser = 0; assign axi_hp1_awid = 0; assign axi_hp1_awuser = 0; // Interrupt mapping wire [7:0] pl_ps_irq0; wire [7:2] pl_ps_irq1; assign pl_ps_irq0 = 8'b0; assign pl_ps_irq1[2] = 1'b0; assign pl_ps_irq1[3] = 1'b0; assign pl_ps_irq1[4] = eth0_rx_irq[0] || eth0_rx_irq[1] || eth0_rx_irq[2] || eth0_rx_irq[3]; assign pl_ps_irq1[5] = eth0_tx_irq[0] || eth0_tx_irq[1] || eth0_tx_irq[2] || eth0_tx_irq[3]; assign pl_ps_irq1[6] = eth1_rx_irq[0] || eth1_rx_irq[1] || eth1_rx_irq[2] || eth1_rx_irq[3]; assign pl_ps_irq1[7] = eth1_tx_irq[0] || eth1_tx_irq[1] || eth1_tx_irq[2] || eth1_tx_irq[3]; // GPIO inputs (assigned from 31 decreasing) // // Make the current PPS signal available to the PS. assign gpio_0_tri_i[31] = pps_refclk; assign gpio_0_tri_i[30] = 0; //unused //QSFP+ module present signals assign gpio_0_tri_i[29] = QSFP1_MODPRS_n; assign gpio_0_tri_i[28] = QSFP0_MODPRS_n; assign gpio_0_tri_i[27:24] = 4'b0; // unused assign gpio_0_tri_i[23] = eth1_link_up[3]; assign gpio_0_tri_i[22] = eth1_link_up[2]; assign gpio_0_tri_i[21] = eth1_link_up[1]; assign gpio_0_tri_i[20] = eth1_link_up[0]; assign gpio_0_tri_i[19] = eth0_link_up[3]; assign gpio_0_tri_i[18] = eth0_link_up[2]; assign gpio_0_tri_i[17] = eth0_link_up[1]; assign gpio_0_tri_i[16] = eth0_link_up[0]; assign gpio_0_tri_i[15:14] = 2'b0; assign gpio_0_tri_i[13:12] = user_led_ctrl[2]; assign gpio_0_tri_i[11:10] = user_led_ctrl[1]; assign gpio_0_tri_i[9:8] = user_led_ctrl[0]; assign gpio_0_tri_i[7:0] = 8'b0; // unused // GPIO outputs (assigned from 0 increasing) // // Drive the JTAG level translator enable line (active low) with GPIO[0] from // the PS. assign CPLD_JTAG_OE_n = gpio_0_tri_o[0]; // Drive the CPLD JTAG enable line (active high) with GPIO[1] from the PS. assign PL_CPLD_JTAGEN = gpio_0_tri_o[1]; x4xx_ps_rfdc_bd x4xx_ps_rfdc_bd_i ( .adc_data_out_resetn_dclk (adc_data_out_resetn_dclk), .adc_enable_data_rclk (adc_enable_data_rclk), .adc_reset_pulse_dclk (adc_reset_pulse), .adc_rfdc_axi_resetn_rclk (adc_rfdc_axi_resetn_rclk), .bus_clk (clk200), .bus_rstn (clk200_rstn), .clk40 (clk40), .clk40_rstn (clk40_rstn), .dac_data_in_resetn_dclk (dac_data_in_resetn_dclk), .dac_data_in_resetn_dclk2x (dac_data_in_resetn_dclk2x), .dac_data_in_resetn_rclk (dac_data_in_resetn_rclk), .dac_data_in_resetn_rclk2x (dac_data_in_resetn_rclk2x), .dac_reset_pulse_dclk (dac_reset_pulse), .data_clk (data_clk), .data_clk_2x (data_clk_2x), .data_clock_locked (), .enable_gated_clocks_clk40 (1'b1), .enable_sysref_rclk (1'b1), .fir_resetn_rclk2x (fir_resetn_rclk2x), .gated_base_clks_valid_clk40 (), .invert_adc_iq_rclk2 (invert_adc_iq_rclk2), .invert_dac_iq_rclk2 (invert_dac_iq_rclk2), .irq0_lpd_rpu_n (1'b1), .irq1_lpd_rpu_n (1'b1), .jtag0_tck (), .jtag0_tdi (), .jtag0_tdo (), .jtag0_tms (), .nco_reset_done_dclk (nco_reset_done), .pl_clk40 (clk40), .pl_clk100 (clk100), .pl_clk166 (), .pl_clk200 (clk200), .pl_ps_irq0 (pl_ps_irq0), .pl_ps_irq1 (pl_ps_irq1), .pl_resetn0 (pl_resetn0), .pl_resetn1 (), .pl_resetn2 (), .pl_resetn3 (), .pll_ref_clk_in (pll_ref_clk_in), .pll_ref_clk_out (pll_ref_clk), .rf_axi_status_clk40 (rf_axi_status_clk40), .rf_dsp_info_clk40 (rf_dsp_info_clk40), .rfdc_clk (rfdc_clk), .rfdc_clk_2x (rfdc_clk_2x), .rfdc_irq (), .s_axi_hp0_aclk (clk40), .s_axi_hp1_aclk (clk40), .s_axi_hpc0_aclk (), .start_nco_reset_dclk (start_nco_reset), .sysref_out_pclk (), .sysref_out_rclk (), .sysref_pl_in (sysref_pl), .s_axi_hp0_aruser (axi_hp0_aruser), .s_axi_hp0_awuser (axi_hp0_awuser), .s_axi_hp0_awid (axi_hp0_awid), .s_axi_hp0_awaddr (axi_hp0_awaddr), .s_axi_hp0_awlen (axi_hp0_awlen), .s_axi_hp0_awsize (axi_hp0_awsize), .s_axi_hp0_awburst (axi_hp0_awburst), .s_axi_hp0_awlock (axi_hp0_awlock), .s_axi_hp0_awcache (axi_hp0_awcache), .s_axi_hp0_awprot (axi_hp0_awprot), .s_axi_hp0_awvalid (axi_hp0_awvalid), .s_axi_hp0_awready (axi_hp0_awready), .s_axi_hp0_wdata (axi_hp0_wdata), .s_axi_hp0_wstrb (axi_hp0_wstrb), .s_axi_hp0_wlast (axi_hp0_wlast), .s_axi_hp0_wvalid (axi_hp0_wvalid), .s_axi_hp0_wready (axi_hp0_wready), .s_axi_hp0_bid (), .s_axi_hp0_bresp (axi_hp0_bresp), .s_axi_hp0_bvalid (axi_hp0_bvalid), .s_axi_hp0_bready (axi_hp0_bready), .s_axi_hp0_arid (axi_hp0_arid), .s_axi_hp0_araddr (axi_hp0_araddr), .s_axi_hp0_arlen (axi_hp0_arlen), .s_axi_hp0_arsize (axi_hp0_arsize), .s_axi_hp0_arburst (axi_hp0_arburst), .s_axi_hp0_arlock (axi_hp0_arlock), .s_axi_hp0_arcache (axi_hp0_arcache), .s_axi_hp0_arprot (axi_hp0_arprot), .s_axi_hp0_arvalid (axi_hp0_arvalid), .s_axi_hp0_arready (axi_hp0_arready), .s_axi_hp0_rid (), .s_axi_hp0_rdata (axi_hp0_rdata), .s_axi_hp0_rresp (axi_hp0_rresp), .s_axi_hp0_rlast (axi_hp0_rlast), .s_axi_hp0_rvalid (axi_hp0_rvalid), .s_axi_hp0_rready (axi_hp0_rready), .s_axi_hp0_awqos (axi_hp0_awqos), .s_axi_hp0_arqos (axi_hp0_arqos), .s_axis_eth_dma_tdata (e2h_dma_tdata), .s_axis_eth_dma_tkeep (e2h_dma_tkeep), .s_axis_eth_dma_tlast (e2h_dma_tlast), .s_axis_eth_dma_tready (e2h_dma_tready), .s_axis_eth_dma_tvalid (e2h_dma_tvalid), .s_axi_hp1_aruser (axi_hp1_aruser), .s_axi_hp1_awuser (axi_hp1_awuser), .s_axi_hp1_awid (axi_hp1_awid), .s_axi_hp1_awaddr (axi_hp1_awaddr), .s_axi_hp1_awlen (axi_hp1_awlen), .s_axi_hp1_awsize (axi_hp1_awsize), .s_axi_hp1_awburst (axi_hp1_awburst), .s_axi_hp1_awlock (axi_hp1_awlock), .s_axi_hp1_awcache (axi_hp1_awcache), .s_axi_hp1_awprot (axi_hp1_awprot), .s_axi_hp1_awvalid (axi_hp1_awvalid), .s_axi_hp1_awready (axi_hp1_awready), .s_axi_hp1_wdata (axi_hp1_wdata), .s_axi_hp1_wstrb (axi_hp1_wstrb), .s_axi_hp1_wlast (axi_hp1_wlast), .s_axi_hp1_wvalid (axi_hp1_wvalid), .s_axi_hp1_wready (axi_hp1_wready), .s_axi_hp1_bid (), .s_axi_hp1_bresp (axi_hp1_bresp), .s_axi_hp1_bvalid (axi_hp1_bvalid), .s_axi_hp1_bready (axi_hp1_bready), .s_axi_hp1_arid (axi_hp1_arid), .s_axi_hp1_araddr (axi_hp1_araddr), .s_axi_hp1_arlen (axi_hp1_arlen), .s_axi_hp1_arsize (axi_hp1_arsize), .s_axi_hp1_arburst (axi_hp1_arburst), .s_axi_hp1_arlock (axi_hp1_arlock), .s_axi_hp1_arcache (axi_hp1_arcache), .s_axi_hp1_arprot (axi_hp1_arprot), .s_axi_hp1_arvalid (axi_hp1_arvalid), .s_axi_hp1_arready (axi_hp1_arready), .s_axi_hp1_rid (), .s_axi_hp1_rdata (axi_hp1_rdata), .s_axi_hp1_rresp (axi_hp1_rresp), .s_axi_hp1_rlast (axi_hp1_rlast), .s_axi_hp1_rvalid (axi_hp1_rvalid), .s_axi_hp1_rready (axi_hp1_rready), .s_axi_hp1_awqos (axi_hp1_awqos), .s_axi_hp1_arqos (axi_hp1_arqos), .s_axi_hpc0_aruser (), .s_axi_hpc0_awuser (), .s_axi_hpc0_awid (), .s_axi_hpc0_awaddr (), .s_axi_hpc0_awlen (), .s_axi_hpc0_awsize (), .s_axi_hpc0_awburst (), .s_axi_hpc0_awlock (), .s_axi_hpc0_awcache (), .s_axi_hpc0_awprot (), .s_axi_hpc0_awvalid (), .s_axi_hpc0_awready (), .s_axi_hpc0_wdata (), .s_axi_hpc0_wstrb (), .s_axi_hpc0_wlast (), .s_axi_hpc0_wvalid (), .s_axi_hpc0_wready (), .s_axi_hpc0_bid (), .s_axi_hpc0_bresp (), .s_axi_hpc0_bvalid (), .s_axi_hpc0_bready (), .s_axi_hpc0_arid (), .s_axi_hpc0_araddr (), .s_axi_hpc0_arlen (), .s_axi_hpc0_arsize (), .s_axi_hpc0_arburst (), .s_axi_hpc0_arlock (), .s_axi_hpc0_arcache (), .s_axi_hpc0_arprot (), .s_axi_hpc0_arvalid (), .s_axi_hpc0_arready (), .s_axi_hpc0_rid (), .s_axi_hpc0_rdata (), .s_axi_hpc0_rresp (), .s_axi_hpc0_rlast (), .s_axi_hpc0_rvalid (), .s_axi_hpc0_rready (), .s_axi_hpc0_awqos (), .s_axi_hpc0_arqos (), .adc0_clk_clk_n (ADC_CLK_N[0]), .adc0_clk_clk_p (ADC_CLK_P[0]), .adc2_clk_clk_n (ADC_CLK_N[2]), .adc2_clk_clk_p (ADC_CLK_P[2]), .m_axi_app_awaddr (m_axi_app_awaddr), .m_axi_app_awprot (m_axi_app_awprot), .m_axi_app_awvalid (m_axi_app_awvalid), .m_axi_app_awready (m_axi_app_awready), .m_axi_app_wdata (m_axi_app_wdata), .m_axi_app_wstrb (m_axi_app_wstrb), .m_axi_app_wvalid (m_axi_app_wvalid), .m_axi_app_wready (m_axi_app_wready), .m_axi_app_bresp (m_axi_app_bresp), .m_axi_app_bvalid (m_axi_app_bvalid), .m_axi_app_bready (m_axi_app_bready), .m_axi_app_araddr (m_axi_app_araddr), .m_axi_app_arprot (m_axi_app_arprot), .m_axi_app_arvalid (m_axi_app_arvalid), .m_axi_app_arready (m_axi_app_arready), .m_axi_app_rdata (m_axi_app_rdata), .m_axi_app_rresp (m_axi_app_rresp), .m_axi_app_rvalid (m_axi_app_rvalid), .m_axi_app_rready (m_axi_app_rready), .dac0_clk_clk_n (DAC_CLK_N[0]), .dac0_clk_clk_p (DAC_CLK_P[0]), .dac1_clk_clk_n (DAC_CLK_N[1]), .dac1_clk_clk_p (DAC_CLK_P[1]), .gpio_0_tri_i (gpio_0_tri_i), .gpio_0_tri_o (gpio_0_tri_o), .gpio_0_tri_t (), .m_axi_eth_internal_awaddr (axi_eth_internal_awaddr), .m_axi_eth_internal_awprot (), .m_axi_eth_internal_awvalid (axi_eth_internal_awvalid), .m_axi_eth_internal_awready (axi_eth_internal_awready), .m_axi_eth_internal_wdata (axi_eth_internal_wdata), .m_axi_eth_internal_wstrb (axi_eth_internal_wstrb), .m_axi_eth_internal_wvalid (axi_eth_internal_wvalid), .m_axi_eth_internal_wready (axi_eth_internal_wready), .m_axi_eth_internal_bresp (axi_eth_internal_bresp), .m_axi_eth_internal_bvalid (axi_eth_internal_bvalid), .m_axi_eth_internal_bready (axi_eth_internal_bready), .m_axi_eth_internal_araddr (axi_eth_internal_araddr), .m_axi_eth_internal_arprot (), .m_axi_eth_internal_arvalid (axi_eth_internal_arvalid), .m_axi_eth_internal_arready (axi_eth_internal_arready), .m_axi_eth_internal_rdata (axi_eth_internal_rdata), .m_axi_eth_internal_rresp (axi_eth_internal_rresp), .m_axi_eth_internal_rvalid (axi_eth_internal_rvalid), .m_axi_eth_internal_rready (axi_eth_internal_rready), .m_axis_eth_dma_tdata (h2e_dma_tdata), .m_axis_eth_dma_tkeep (h2e_dma_tkeep), .m_axis_eth_dma_tlast (h2e_dma_tlast), .m_axis_eth_dma_tready (h2e_dma_tready), .m_axis_eth_dma_tvalid (h2e_dma_tvalid), .m_axi_rpu_awaddr (), .m_axi_rpu_awprot (), .m_axi_rpu_awvalid (), .m_axi_rpu_awready (), .m_axi_rpu_wdata (), .m_axi_rpu_wstrb (), .m_axi_rpu_wvalid (), .m_axi_rpu_wready (), .m_axi_rpu_bresp (), .m_axi_rpu_bvalid (), .m_axi_rpu_bready (), .m_axi_rpu_araddr (), .m_axi_rpu_arprot (), .m_axi_rpu_arvalid (), .m_axi_rpu_arready (), .m_axi_rpu_rdata (), .m_axi_rpu_rresp (), .m_axi_rpu_rvalid (), .m_axi_rpu_rready (), .m_axi_core_awaddr (axi_core_awaddr), .m_axi_core_awprot (), .m_axi_core_awvalid (axi_core_awvalid), .m_axi_core_awready (axi_core_awready), .m_axi_core_wdata (axi_core_wdata), .m_axi_core_wstrb (axi_core_wstrb), .m_axi_core_wvalid (axi_core_wvalid), .m_axi_core_wready (axi_core_wready), .m_axi_core_bresp (axi_core_bresp), .m_axi_core_bvalid (axi_core_bvalid), .m_axi_core_bready (axi_core_bready), .m_axi_core_araddr (axi_core_araddr), .m_axi_core_arprot (), .m_axi_core_arvalid (axi_core_arvalid), .m_axi_core_arready (axi_core_arready), .m_axi_core_rdata (axi_core_rdata), .m_axi_core_rresp (axi_core_rresp), .m_axi_core_rvalid (axi_core_rvalid), .m_axi_core_rready (axi_core_rready), .m_axi_mpm_ep_awaddr (m_axi_mpm_ep_awaddr), .m_axi_mpm_ep_awprot (), .m_axi_mpm_ep_awvalid (m_axi_mpm_ep_awvalid), .m_axi_mpm_ep_awready (m_axi_mpm_ep_awready), .m_axi_mpm_ep_wdata (m_axi_mpm_ep_wdata), .m_axi_mpm_ep_wstrb (m_axi_mpm_ep_wstrb), .m_axi_mpm_ep_wvalid (m_axi_mpm_ep_wvalid), .m_axi_mpm_ep_wready (m_axi_mpm_ep_wready), .m_axi_mpm_ep_bresp (m_axi_mpm_ep_bresp), .m_axi_mpm_ep_bvalid (m_axi_mpm_ep_bvalid), .m_axi_mpm_ep_bready (m_axi_mpm_ep_bready), .m_axi_mpm_ep_araddr (m_axi_mpm_ep_araddr), .m_axi_mpm_ep_arprot (), .m_axi_mpm_ep_arvalid (m_axi_mpm_ep_arvalid), .m_axi_mpm_ep_arready (m_axi_mpm_ep_arready), .m_axi_mpm_ep_rdata (m_axi_mpm_ep_rdata), .m_axi_mpm_ep_rresp (m_axi_mpm_ep_rresp), .m_axi_mpm_ep_rvalid (m_axi_mpm_ep_rvalid), .m_axi_mpm_ep_rready (m_axi_mpm_ep_rready), .adc_tile224_ch0_dout_i_tdata (adc_tile_dout_i_tdata[0]), .adc_tile224_ch0_dout_i_tready (adc_tile_dout_i_tready[0]), .adc_tile224_ch0_dout_i_tvalid (adc_tile_dout_i_tvalid[0]), .adc_tile224_ch0_dout_q_tdata (adc_tile_dout_q_tdata[0]), .adc_tile224_ch0_dout_q_tready (adc_tile_dout_q_tready[0]), .adc_tile224_ch0_dout_q_tvalid (adc_tile_dout_q_tvalid[0]), .adc_tile224_ch1_dout_i_tdata (adc_tile_dout_i_tdata[1]), .adc_tile224_ch1_dout_i_tready (adc_tile_dout_i_tready[1]), .adc_tile224_ch1_dout_i_tvalid (adc_tile_dout_i_tvalid[1]), .adc_tile224_ch1_dout_q_tdata (adc_tile_dout_q_tdata[1]), .adc_tile224_ch1_dout_q_tready (adc_tile_dout_q_tready[1]), .adc_tile224_ch1_dout_q_tvalid (adc_tile_dout_q_tvalid[1]), .adc_tile226_ch0_dout_i_tdata (adc_tile_dout_i_tdata[2]), .adc_tile226_ch0_dout_i_tready (adc_tile_dout_i_tready[2]), .adc_tile226_ch0_dout_i_tvalid (adc_tile_dout_i_tvalid[2]), .adc_tile226_ch0_dout_q_tdata (adc_tile_dout_q_tdata[2]), .adc_tile226_ch0_dout_q_tready (adc_tile_dout_q_tready[2]), .adc_tile226_ch0_dout_q_tvalid (adc_tile_dout_q_tvalid[2]), .adc_tile226_ch1_dout_i_tdata (adc_tile_dout_i_tdata[3]), .adc_tile226_ch1_dout_i_tready (adc_tile_dout_i_tready[3]), .adc_tile226_ch1_dout_i_tvalid (adc_tile_dout_i_tvalid[3]), .adc_tile226_ch1_dout_q_tdata (adc_tile_dout_q_tdata[3]), .adc_tile226_ch1_dout_q_tready (adc_tile_dout_q_tready[3]), .adc_tile226_ch1_dout_q_tvalid (adc_tile_dout_q_tvalid[3]), .dac_tile228_ch0_vout_v_n (DB0_TX_N[0]), .dac_tile228_ch0_vout_v_p (DB0_TX_P[0]), .dac_tile228_ch1_vout_v_n (DB0_TX_N[1]), .dac_tile228_ch1_vout_v_p (DB0_TX_P[1]), .dac_tile229_ch0_vout_v_n (DB1_TX_N[0]), .dac_tile229_ch0_vout_v_p (DB1_TX_P[0]), .dac_tile229_ch1_vout_v_n (DB1_TX_N[1]), .dac_tile229_ch1_vout_v_p (DB1_TX_P[1]), .dac_tile228_ch0_din_tdata (dac_tile_din_tdata[0]), .dac_tile228_ch0_din_tvalid (dac_tile_din_tvalid[0]), .dac_tile228_ch0_din_tready (dac_tile_din_tready[0]), .dac_tile228_ch1_din_tdata (dac_tile_din_tdata[1]), .dac_tile228_ch1_din_tvalid (dac_tile_din_tvalid[1]), .dac_tile228_ch1_din_tready (dac_tile_din_tready[1]), .dac_tile229_ch0_din_tdata (dac_tile_din_tdata[2]), .dac_tile229_ch0_din_tvalid (dac_tile_din_tvalid[2]), .dac_tile229_ch0_din_tready (dac_tile_din_tready[2]), .dac_tile229_ch1_din_tdata (dac_tile_din_tdata[3]), .dac_tile229_ch1_din_tvalid (dac_tile_din_tvalid[3]), .dac_tile229_ch1_din_tready (dac_tile_din_tready[3]), .s_axi_hpc1_awid (), .s_axi_hpc1_awaddr (), .s_axi_hpc1_awlen (), .s_axi_hpc1_awsize (), .s_axi_hpc1_awburst (), .s_axi_hpc1_awlock (), .s_axi_hpc1_awcache (), .s_axi_hpc1_awprot (), .s_axi_hpc1_awqos (), .s_axi_hpc1_awvalid (), .s_axi_hpc1_awready (), .s_axi_hpc1_wdata (), .s_axi_hpc1_wstrb (), .s_axi_hpc1_wlast (), .s_axi_hpc1_wvalid (), .s_axi_hpc1_wready (), .s_axi_hpc1_bid (), .s_axi_hpc1_bresp (), .s_axi_hpc1_bvalid (), .s_axi_hpc1_bready (), .s_axi_hpc1_arid (), .s_axi_hpc1_araddr (), .s_axi_hpc1_arlen (), .s_axi_hpc1_arsize (), .s_axi_hpc1_arburst (), .s_axi_hpc1_arlock (), .s_axi_hpc1_arcache (), .s_axi_hpc1_arprot (), .s_axi_hpc1_arqos (), .s_axi_hpc1_arvalid (), .s_axi_hpc1_arready (), .s_axi_hpc1_rid (), .s_axi_hpc1_rdata (), .s_axi_hpc1_rresp (), .s_axi_hpc1_rlast (), .s_axi_hpc1_rvalid (), .s_axi_hpc1_rready (), .sysref_rf_in_diff_n (SYSREF_RF_N), .sysref_rf_in_diff_p (SYSREF_RF_P), .adc_tile224_ch0_vin_v_n (DB0_RX_N[0]), .adc_tile224_ch0_vin_v_p (DB0_RX_P[0]), .adc_tile224_ch1_vin_v_n (DB0_RX_N[1]), .adc_tile224_ch1_vin_v_p (DB0_RX_P[1]), .adc_tile226_ch0_vin_v_n (DB1_RX_N[0]), .adc_tile226_ch0_vin_v_p (DB1_RX_P[0]), .adc_tile226_ch1_vin_v_n (DB1_RX_N[1]), .adc_tile226_ch1_vin_v_p (DB1_RX_P[1]), .s_axi_hpc1_aruser (), .s_axi_hpc1_awuser () ); //--------------------------------------------------------------------------- // AXI Interconnect //--------------------------------------------------------------------------- wire [ 39:0] axi_qsfp0_araddr; wire [ 0:0] axi_qsfp0_arready; wire [ 0:0] axi_qsfp0_arvalid; wire [ 39:0] axi_qsfp0_awaddr; wire [ 0:0] axi_qsfp0_awready; wire [ 0:0] axi_qsfp0_awvalid; wire [ 0:0] axi_qsfp0_bready; wire [ 1:0] axi_qsfp0_bresp; wire [ 0:0] axi_qsfp0_bvalid; wire [ 31:0] axi_qsfp0_rdata; wire [ 0:0] axi_qsfp0_rready; wire [ 1:0] axi_qsfp0_rresp; wire [ 0:0] axi_qsfp0_rvalid; wire [ 31:0] axi_qsfp0_wdata; wire [ 0:0] axi_qsfp0_wready; wire [ 3:0] axi_qsfp0_wstrb; wire [ 0:0] axi_qsfp0_wvalid; wire [ 39:0] axi_qsfp1_araddr; wire [ 0:0] axi_qsfp1_arready; wire [ 0:0] axi_qsfp1_arvalid; wire [ 39:0] axi_qsfp1_awaddr; wire [ 0:0] axi_qsfp1_awready; wire [ 0:0] axi_qsfp1_awvalid; wire [ 0:0] axi_qsfp1_bready; wire [ 1:0] axi_qsfp1_bresp; wire [ 0:0] axi_qsfp1_bvalid; wire [ 31:0] axi_qsfp1_rdata; wire [ 0:0] axi_qsfp1_rready; wire [ 1:0] axi_qsfp1_rresp; wire [ 0:0] axi_qsfp1_rvalid; wire [ 31:0] axi_qsfp1_wdata; wire [ 0:0] axi_qsfp1_wready; wire [ 3:0] axi_qsfp1_wstrb; wire [ 0:0] axi_qsfp1_wvalid; axi_interconnect_app_bd axi_interconnect_app_bd_i ( .clk40 (clk40), .clk40_rstn (clk40_rstn), .m_axi_qsfp0_araddr (axi_qsfp0_araddr), .m_axi_qsfp0_arprot (), .m_axi_qsfp0_arready (axi_qsfp0_arready), .m_axi_qsfp0_arvalid (axi_qsfp0_arvalid), .m_axi_qsfp0_awaddr (axi_qsfp0_awaddr), .m_axi_qsfp0_awprot (), .m_axi_qsfp0_awready (axi_qsfp0_awready), .m_axi_qsfp0_awvalid (axi_qsfp0_awvalid), .m_axi_qsfp0_bready (axi_qsfp0_bready), .m_axi_qsfp0_bresp (axi_qsfp0_bresp), .m_axi_qsfp0_bvalid (axi_qsfp0_bvalid), .m_axi_qsfp0_rdata (axi_qsfp0_rdata), .m_axi_qsfp0_rready (axi_qsfp0_rready), .m_axi_qsfp0_rresp (axi_qsfp0_rresp), .m_axi_qsfp0_rvalid (axi_qsfp0_rvalid), .m_axi_qsfp0_wdata (axi_qsfp0_wdata), .m_axi_qsfp0_wready (axi_qsfp0_wready), .m_axi_qsfp0_wstrb (axi_qsfp0_wstrb), .m_axi_qsfp0_wvalid (axi_qsfp0_wvalid), .m_axi_qsfp1_araddr (axi_qsfp1_araddr), .m_axi_qsfp1_arprot (), .m_axi_qsfp1_arready (axi_qsfp1_arready), .m_axi_qsfp1_arvalid (axi_qsfp1_arvalid), .m_axi_qsfp1_awaddr (axi_qsfp1_awaddr), .m_axi_qsfp1_awprot (), .m_axi_qsfp1_awready (axi_qsfp1_awready), .m_axi_qsfp1_awvalid (axi_qsfp1_awvalid), .m_axi_qsfp1_bready (axi_qsfp1_bready), .m_axi_qsfp1_bresp (axi_qsfp1_bresp), .m_axi_qsfp1_bvalid (axi_qsfp1_bvalid), .m_axi_qsfp1_rdata (axi_qsfp1_rdata), .m_axi_qsfp1_rready (axi_qsfp1_rready), .m_axi_qsfp1_rresp (axi_qsfp1_rresp), .m_axi_qsfp1_rvalid (axi_qsfp1_rvalid), .m_axi_qsfp1_wdata (axi_qsfp1_wdata), .m_axi_qsfp1_wready (axi_qsfp1_wready), .m_axi_qsfp1_wstrb (axi_qsfp1_wstrb), .m_axi_qsfp1_wvalid (axi_qsfp1_wvalid), .s_axi_app_araddr (m_axi_app_araddr), .s_axi_app_arprot (m_axi_app_arprot), .s_axi_app_arready (m_axi_app_arready), .s_axi_app_arvalid (m_axi_app_arvalid), .s_axi_app_awaddr (m_axi_app_awaddr), .s_axi_app_awprot (m_axi_app_awprot), .s_axi_app_awready (m_axi_app_awready), .s_axi_app_awvalid (m_axi_app_awvalid), .s_axi_app_bready (m_axi_app_bready), .s_axi_app_bresp (m_axi_app_bresp), .s_axi_app_bvalid (m_axi_app_bvalid), .s_axi_app_rdata (m_axi_app_rdata), .s_axi_app_rready (m_axi_app_rready), .s_axi_app_rresp (m_axi_app_rresp), .s_axi_app_rvalid (m_axi_app_rvalid), .s_axi_app_wdata (m_axi_app_wdata), .s_axi_app_wready (m_axi_app_wready), .s_axi_app_wstrb (m_axi_app_wstrb), .s_axi_app_wvalid (m_axi_app_wvalid) ); //--------------------------------------------------------------------------- // RF + Control Daughterboard Cores //--------------------------------------------------------------------------- localparam NUM_DBOARDS = 2; localparam NUM_CHANNELS_PER_DBOARD = 2; localparam NUM_CHANNELS = NUM_DBOARDS*NUM_CHANNELS_PER_DBOARD; // Radio timestamp wire [ 63:0] radio_time; wire radio_time_stb; wire [ 3:0] time_ignore_bits; // User data interfaces (data_clk domain) // // ADC (note no tready signal, ADC data can't be throttled) wire [RADIO_SPC*32-1:0] adc_data_out_tdata [0:3]; // 32-bit samples (I + Q) wire [3:0] adc_data_out_tvalid; // DAC wire [RADIO_SPC*32-1:0] dac_data_in_tdata [0:3]; // 32-bit samples (I + Q) wire [3:0] dac_data_in_tready; wire [3:0] dac_data_in_tvalid; // GPIO ctrlport interface wire db_ctrlport_req_rd [0:1]; wire db_ctrlport_req_wr [0:1]; wire [19:0] db_ctrlport_req_addr [0:1]; wire [31:0] db_ctrlport_req_data [0:1]; wire [ 3:0] db_ctrlport_req_byte_en [0:1]; wire db_ctrlport_req_has_time [0:1]; wire [63:0] db_ctrlport_req_time [0:1]; wire db_ctrlport_resp_ack [0:1]; wire [31:0] db_ctrlport_resp_data [0:1]; wire [ 1:0] db_ctrlport_resp_status [0:1]; // GPIO interface wire [19:0] db_gpio_in_int [0:1]; wire [19:0] db_gpio_out_int [0:1]; wire [19:0] db_gpio_out_en_int[0:1]; wire [19:0] db_gpio_out_ext [0:1]; wire [19:0] db_gpio_out_en_ext[0:1]; // GPIO states wire [ 3:0] rx_running; wire [ 3:0] tx_running; wire [ 3:0] db_state [0:1]; assign db_state[0] = { tx_running[1], rx_running[1], tx_running[0], rx_running[0] }; assign db_state[1] = { tx_running[3], rx_running[3], tx_running[2], rx_running[2] }; // Version info // These wires only convey constant data. wire [COMPONENT_VERSIONS_SIZE-1:0] rf_core_version [0:1]; wire [COMPONENT_VERSIONS_SIZE-1:0] db_gpio_ifc_version [0:1]; genvar dboard_num; generate for (dboard_num=0; dboard_num < (NUM_DBOARDS); dboard_num = dboard_num + 1) begin : gen_rf_cores if (RF_BANDWIDTH == 100) begin : gen_rf_core_100m localparam ADC_AXIS_W = 32; localparam DAC_AXIS_W = 64; rf_core_100m rf_core_100m_i ( .rfdc_clk (rfdc_clk), .rfdc_clk_2x (rfdc_clk_2x), .data_clk (data_clk), .data_clk_2x (data_clk_2x), .s_axi_config_clk (clk40), .adc_data_in_i_tdata_0 (adc_tile_dout_i_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0][ADC_AXIS_W-1:0]), .adc_data_in_i_tready_0 (adc_tile_dout_i_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_i_tvalid_0 (adc_tile_dout_i_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_q_tdata_0 (adc_tile_dout_q_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0][ADC_AXIS_W-1:0]), .adc_data_in_q_tready_0 (adc_tile_dout_q_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_q_tvalid_0 (adc_tile_dout_q_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_i_tdata_1 (adc_tile_dout_i_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1][ADC_AXIS_W-1:0]), .adc_data_in_i_tready_1 (adc_tile_dout_i_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_in_i_tvalid_1 (adc_tile_dout_i_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_in_q_tdata_1 (adc_tile_dout_q_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1][ADC_AXIS_W-1:0]), .adc_data_in_q_tready_1 (adc_tile_dout_q_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_in_q_tvalid_1 (adc_tile_dout_q_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_out_tdata_0 (dac_tile_din_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0][DAC_AXIS_W-1:0]), .dac_data_out_tready_0 (dac_tile_din_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_out_tvalid_0 (dac_tile_din_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_out_tdata_1 (dac_tile_din_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1][DAC_AXIS_W-1:0]), .dac_data_out_tready_1 (dac_tile_din_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_out_tvalid_1 (dac_tile_din_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_out_tdata_0 (adc_data_out_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_out_tvalid_0 (adc_data_out_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_out_tdata_1 (adc_data_out_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_out_tvalid_1 (adc_data_out_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_in_tdata_0 (dac_data_in_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_in_tready_0 (dac_data_in_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_in_tvalid_0 (dac_data_in_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_in_tdata_1 (dac_data_in_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_in_tready_1 (dac_data_in_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_in_tvalid_1 (dac_data_in_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .invert_adc_iq_rclk2 (invert_adc_iq_rclk2[4*dboard_num+3:4*dboard_num]), .invert_dac_iq_rclk2 (invert_dac_iq_rclk2[4*dboard_num+3:4*dboard_num]), .dsp_info_sclk (rf_dsp_info_clk40[16*dboard_num+15:16*dboard_num]), .axi_status_sclk (rf_axi_status_clk40[16*dboard_num+15:16*dboard_num]), .adc_data_out_resetn_dclk (adc_data_out_resetn_dclk), .adc_enable_data_rclk (adc_enable_data_rclk), .adc_rfdc_axi_resetn_rclk (adc_rfdc_axi_resetn_rclk), .dac_data_in_resetn_dclk (dac_data_in_resetn_dclk), .dac_data_in_resetn_rclk (dac_data_in_resetn_rclk), .dac_data_in_resetn_rclk2x (dac_data_in_resetn_rclk2x), .fir_resetn_rclk2x (fir_resetn_rclk2x), .version_info (rf_core_version[dboard_num]) ); end else if (RF_BANDWIDTH == 200) begin : gen_rf_core_200m localparam ADC_AXIS_W = 128; localparam DAC_AXIS_W = 256; rf_core_200m rf_core_200m_i ( .rfdc_clk (rfdc_clk), .rfdc_clk_2x (rfdc_clk_2x), .data_clk (data_clk), .data_clk_2x (data_clk_2x), .s_axi_config_clk (clk40), .adc_data_in_i_tdata_0 (adc_tile_dout_i_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0][ADC_AXIS_W-1:0]), .adc_data_in_i_tready_0 (adc_tile_dout_i_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_i_tvalid_0 (adc_tile_dout_i_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_q_tdata_0 (adc_tile_dout_q_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0][ADC_AXIS_W-1:0]), .adc_data_in_q_tready_0 (adc_tile_dout_q_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_q_tvalid_0 (adc_tile_dout_q_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_i_tdata_1 (adc_tile_dout_i_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1][ADC_AXIS_W-1:0]), .adc_data_in_i_tready_1 (adc_tile_dout_i_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_in_i_tvalid_1 (adc_tile_dout_i_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_in_q_tdata_1 (adc_tile_dout_q_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1][ADC_AXIS_W-1:0]), .adc_data_in_q_tready_1 (adc_tile_dout_q_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_in_q_tvalid_1 (adc_tile_dout_q_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_out_tdata_0 (dac_tile_din_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0][DAC_AXIS_W-1:0]), .dac_data_out_tready_0 (dac_tile_din_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_out_tvalid_0 (dac_tile_din_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_out_tdata_1 (dac_tile_din_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1][DAC_AXIS_W-1:0]), .dac_data_out_tready_1 (dac_tile_din_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_out_tvalid_1 (dac_tile_din_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_out_tdata_0 (adc_data_out_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_out_tvalid_0 (adc_data_out_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_out_tdata_1 (adc_data_out_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_out_tvalid_1 (adc_data_out_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_in_tdata_0 (dac_data_in_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_in_tready_0 (dac_data_in_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_in_tvalid_0 (dac_data_in_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_in_tdata_1 (dac_data_in_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_in_tready_1 (dac_data_in_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_in_tvalid_1 (dac_data_in_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .invert_adc_iq_rclk2 (invert_adc_iq_rclk2[4*dboard_num+3:4*dboard_num]), .invert_dac_iq_rclk2 (invert_dac_iq_rclk2[4*dboard_num+3:4*dboard_num]), .dsp_info_sclk (rf_dsp_info_clk40[16*dboard_num+15:16*dboard_num]), .axi_status_sclk (rf_axi_status_clk40[16*dboard_num+15:16*dboard_num]), .adc_data_out_resetn_dclk (adc_data_out_resetn_dclk), .adc_enable_data_rclk (adc_enable_data_rclk), .adc_rfdc_axi_resetn_rclk (adc_rfdc_axi_resetn_rclk), .dac_data_in_resetn_dclk (dac_data_in_resetn_dclk), .dac_data_in_resetn_dclk2x (dac_data_in_resetn_dclk2x), .dac_data_in_resetn_rclk (dac_data_in_resetn_rclk), .fir_resetn_rclk2x (fir_resetn_rclk2x), .version_info (rf_core_version[dboard_num]) ); end else if (RF_BANDWIDTH == 400) begin : gen_rf_core_400m localparam ADC_AXIS_W = 128; localparam DAC_AXIS_W = 256; rf_core_400m rf_core_400m_i ( .rfdc_clk (rfdc_clk), .rfdc_clk_2x (rfdc_clk_2x), .data_clk (data_clk), .data_clk_2x (data_clk_2x), .s_axi_config_clk (clk40), .adc_data_in_i_tdata_0 (adc_tile_dout_i_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0][ADC_AXIS_W-1:0]), .adc_data_in_i_tready_0 (adc_tile_dout_i_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_i_tvalid_0 (adc_tile_dout_i_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_q_tdata_0 (adc_tile_dout_q_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0][ADC_AXIS_W-1:0]), .adc_data_in_q_tready_0 (adc_tile_dout_q_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_q_tvalid_0 (adc_tile_dout_q_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_in_i_tdata_1 (adc_tile_dout_i_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1][ADC_AXIS_W-1:0]), .adc_data_in_i_tready_1 (adc_tile_dout_i_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_in_i_tvalid_1 (adc_tile_dout_i_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_in_q_tdata_1 (adc_tile_dout_q_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1][ADC_AXIS_W-1:0]), .adc_data_in_q_tready_1 (adc_tile_dout_q_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_in_q_tvalid_1 (adc_tile_dout_q_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_out_tdata_0 (dac_tile_din_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0][DAC_AXIS_W-1:0]), .dac_data_out_tready_0 (dac_tile_din_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_out_tvalid_0 (dac_tile_din_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_out_tdata_1 (dac_tile_din_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1][DAC_AXIS_W-1:0]), .dac_data_out_tready_1 (dac_tile_din_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_out_tvalid_1 (dac_tile_din_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_out_tdata_0 (adc_data_out_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_out_tvalid_0 (adc_data_out_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .adc_data_out_tdata_1 (adc_data_out_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .adc_data_out_tvalid_1 (adc_data_out_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_in_tdata_0 (dac_data_in_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_in_tready_0 (dac_data_in_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_in_tvalid_0 (dac_data_in_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+0]), .dac_data_in_tdata_1 (dac_data_in_tdata[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_in_tready_1 (dac_data_in_tready[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .dac_data_in_tvalid_1 (dac_data_in_tvalid[NUM_CHANNELS_PER_DBOARD*dboard_num+1]), .invert_adc_iq_rclk2 (invert_adc_iq_rclk2[4*dboard_num+3:4*dboard_num]), .invert_dac_iq_rclk2 (invert_dac_iq_rclk2[4*dboard_num+3:4*dboard_num]), .dsp_info_sclk (rf_dsp_info_clk40[16*dboard_num+15:16*dboard_num]), .axi_status_sclk (rf_axi_status_clk40[16*dboard_num+15:16*dboard_num]), .adc_data_out_resetn_dclk (adc_data_out_resetn_dclk), .adc_enable_data_rclk (adc_enable_data_rclk), .adc_rfdc_axi_resetn_rclk (adc_rfdc_axi_resetn_rclk), .dac_data_in_resetn_dclk (dac_data_in_resetn_dclk), .dac_data_in_resetn_dclk2x (dac_data_in_resetn_dclk2x), .dac_data_in_resetn_rclk (dac_data_in_resetn_rclk), .fir_resetn_rclk2x (fir_resetn_rclk2x), .version_info (rf_core_version[dboard_num]) ); end // gen_rf_core_400m end // gen_rf_cores for (dboard_num=0; dboard_num < (NUM_DBOARDS); dboard_num = dboard_num + 1) begin : db_gpio_gen db_gpio_interface db_gpio_interface_i ( .radio_clk (radio_clk), .pll_ref_clk (pll_ref_clk), .db_state (db_state[dboard_num]), .radio_time (radio_time), .radio_time_stb (radio_time_stb), .time_ignore_bits (time_ignore_bits), .ctrlport_rst (radio_rst), .s_ctrlport_req_wr (db_ctrlport_req_wr[dboard_num]), .s_ctrlport_req_rd (db_ctrlport_req_rd[dboard_num]), .s_ctrlport_req_addr (db_ctrlport_req_addr[dboard_num]), .s_ctrlport_req_data (db_ctrlport_req_data[dboard_num]), .s_ctrlport_req_byte_en (db_ctrlport_req_byte_en[dboard_num]), .s_ctrlport_req_has_time (db_ctrlport_req_has_time[dboard_num]), .s_ctrlport_req_time (db_ctrlport_req_time[dboard_num]), .s_ctrlport_resp_ack (db_ctrlport_resp_ack[dboard_num]), .s_ctrlport_resp_status (db_ctrlport_resp_status[dboard_num]), .s_ctrlport_resp_data (db_ctrlport_resp_data[dboard_num]), .gpio_in (db_gpio_in_int[dboard_num]), .gpio_out (db_gpio_out_int[dboard_num]), .gpio_out_en (db_gpio_out_en_int[dboard_num]), .version_info (db_gpio_ifc_version[dboard_num]) ); end endgenerate db_gpio_reordering db_gpio_reordering_i ( .db0_gpio_in_int (db_gpio_in_int[0]), .db0_gpio_out_int (db_gpio_out_int[0]), .db0_gpio_out_en_int (db_gpio_out_en_int[0]), .db1_gpio_in_int (db_gpio_in_int[1]), .db1_gpio_out_int (db_gpio_out_int[1]), .db1_gpio_out_en_int (db_gpio_out_en_int[1]), .db0_gpio_in_ext (DB0_GPIO), .db0_gpio_out_ext (db_gpio_out_ext[0]), .db0_gpio_out_en_ext (db_gpio_out_en_ext[0]), .db1_gpio_in_ext (DB1_GPIO), .db1_gpio_out_ext (db_gpio_out_ext[1]), .db1_gpio_out_en_ext (db_gpio_out_en_ext[1]) ); // DB GPIO tristate buffers genvar j; generate for (j=0; j<20; j=j+1) begin: db_gpio_tristate_gen assign DB0_GPIO[j] = (db_gpio_out_en_ext[0][j]) ? db_gpio_out_ext[0][j] : 1'bz; assign DB1_GPIO[j] = (db_gpio_out_en_ext[1][j]) ? db_gpio_out_ext[1][j] : 1'bz; end endgenerate //--------------------------------------------------------------------------- // QSFP Interfaces //--------------------------------------------------------------------------- // Misc QSFP signals are currently unused assign QSFP0_RESET_n = 1'b1; // Module reset assign QSFP0_LPMODE_n = 1'b0; // Low-power Mode assign QSFP1_RESET_n = 1'b1; // Module reset assign QSFP1_LPMODE_n = 1'b0; // Low-power Mode wire [31:0] qsfp_port_0_0_info; wire [31:0] qsfp_port_0_1_info; wire [31:0] qsfp_port_0_2_info; wire [31:0] qsfp_port_0_3_info; wire [31:0] qsfp_port_1_0_info; wire [31:0] qsfp_port_1_1_info; wire [31:0] qsfp_port_1_2_info; wire [31:0] qsfp_port_1_3_info; wire [3:0] qsfp0_tx_p; wire [3:0] qsfp0_tx_n; wire [3:0] qsfp0_rx_p; wire [3:0] qsfp0_rx_n; wire [3:0] qsfp1_tx_p; wire [3:0] qsfp1_tx_n; wire [3:0] qsfp1_rx_p; wire [3:0] qsfp1_rx_n; wire [15:0] device_id; wire rx_rec_clk_out1; // output GTY on QSFP1 // e2v and v2e are flattened arrays, where e2v_tdata[CHDR_W*N +: CHDR_W] is // the data for RFNoC port N. RFNoC ports 0-3 map to QSFP0 and ports 4-7 map // to QSFP1. wire [CHDR_W*8-1:0] e2v_tdata; wire [ 8-1:0] e2v_tlast; wire [ 8-1:0] e2v_tready; wire [ 8-1:0] e2v_tvalid; wire [CHDR_W*8-1:0] v2e_tdata; wire [ 8-1:0] v2e_tlast; wire [ 8-1:0] v2e_tready; wire [ 8-1:0] v2e_tvalid; `ifdef QSFP0_0 assign QSFP0_0_TX_P = qsfp0_tx_p[0]; assign QSFP0_0_TX_N = qsfp0_tx_n[0]; assign qsfp0_rx_p[0] = QSFP0_0_RX_P; assign qsfp0_rx_n[0] = QSFP0_0_RX_N; `else assign qsfp0_rx_p[0] = 1'b0; assign qsfp0_rx_n[0] = 1'b1; `endif `ifdef QSFP0_1 assign QSFP0_1_TX_P = qsfp0_tx_p[1]; assign QSFP0_1_TX_N = qsfp0_tx_n[1]; assign qsfp0_rx_p[1] = QSFP0_1_RX_P; assign qsfp0_rx_n[1] = QSFP0_1_RX_N; `else assign qsfp0_rx_p[1] = 1'b0; assign qsfp0_rx_n[1] = 1'b1; `endif `ifdef QSFP0_2 assign QSFP0_2_TX_P = qsfp0_tx_p[2]; assign QSFP0_2_TX_N = qsfp0_tx_n[2]; assign qsfp0_rx_p[2] = QSFP0_2_RX_P; assign qsfp0_rx_n[2] = QSFP0_2_RX_N; `else assign qsfp0_rx_p[2] = 1'b0; assign qsfp0_rx_n[2] = 1'b1; `endif `ifdef QSFP0_3 assign QSFP0_3_TX_P = qsfp0_tx_p[3]; assign QSFP0_3_TX_N = qsfp0_tx_n[3]; assign qsfp0_rx_p[3] = QSFP0_3_RX_P; assign qsfp0_rx_n[3] = QSFP0_3_RX_N; `else assign qsfp0_rx_p[3] = 1'b0; assign qsfp0_rx_n[3] = 1'b1; `endif `ifdef QSFP1_0 assign QSFP1_0_TX_P = qsfp1_tx_p[0]; assign QSFP1_0_TX_N = qsfp1_tx_n[0]; assign qsfp1_rx_p[0] = QSFP1_0_RX_P; assign qsfp1_rx_n[0] = QSFP1_0_RX_N; `else assign qsfp1_rx_p[0] = 1'b0; assign qsfp1_rx_n[0] = 1'b1; `endif `ifdef QSFP1_1 assign QSFP1_1_TX_P = qsfp1_tx_p[1]; assign QSFP1_1_TX_N = qsfp1_tx_n[1]; assign qsfp1_rx_p[1] = QSFP1_1_RX_P; assign qsfp1_rx_n[1] = QSFP1_1_RX_N; `else assign qsfp1_rx_p[1] = 1'b0; assign qsfp1_rx_n[1] = 1'b1; `endif `ifdef QSFP1_2 assign QSFP1_2_TX_P = qsfp1_tx_p[2]; assign QSFP1_2_TX_N = qsfp1_tx_n[2]; assign qsfp1_rx_p[2] = QSFP1_2_RX_P; assign qsfp1_rx_n[2] = QSFP1_2_RX_N; `else assign qsfp1_rx_p[2] = 1'b0; assign qsfp1_rx_n[2] = 1'b1; `endif `ifdef QSFP1_3 assign QSFP1_3_TX_P = qsfp1_tx_p[3]; assign QSFP1_3_TX_N = qsfp1_tx_n[3]; assign qsfp1_rx_p[3] = QSFP1_3_RX_P; assign qsfp1_rx_n[3] = QSFP1_3_RX_N; `else assign qsfp1_rx_p[3] = 1'b0; assign qsfp1_rx_n[3] = 1'b1; `endif x4xx_qsfp_wrapper_temp #( `ifdef QSFP0_0 .PROTOCOL0 (`QSFP0_0), `endif `ifdef QSFP0_1 .PROTOCOL1 (`QSFP0_1), `endif `ifdef QSFP0_2 .PROTOCOL2 (`QSFP0_2), `endif `ifdef QSFP0_3 .PROTOCOL3 (`QSFP0_3), `endif .CPU_W (CPU_W), .CHDR_W (CHDR_W), .BYTE_MTU (BYTE_MTU), .PORTNUM (0) ) x4xx_qsfp_wrapper_0 ( .areset (areset), .refclk_p (MGT_REFCLK_LMK0_P), .refclk_n (MGT_REFCLK_LMK0_N), .clk100 (clk100), // IP configured for 100 MHz DClk .bus_rst (clk200_rst), .bus_clk (clk200), .clk40_rst (clk40_rst), .clk40 (clk40), // Register Access .s_axi_awaddr (axi_qsfp0_awaddr), .s_axi_awvalid (axi_qsfp0_awvalid), .s_axi_awready (axi_qsfp0_awready), .s_axi_wdata (axi_qsfp0_wdata), .s_axi_wstrb (axi_qsfp0_wstrb), .s_axi_wvalid (axi_qsfp0_wvalid), .s_axi_wready (axi_qsfp0_wready), .s_axi_bresp (axi_qsfp0_bresp), .s_axi_bvalid (axi_qsfp0_bvalid), .s_axi_bready (axi_qsfp0_bready), .s_axi_araddr (axi_qsfp0_araddr), .s_axi_arvalid (axi_qsfp0_arvalid), .s_axi_arready (axi_qsfp0_arready), .s_axi_rdata (axi_qsfp0_rdata), .s_axi_rresp (axi_qsfp0_rresp), .s_axi_rvalid (axi_qsfp0_rvalid), .s_axi_rready (axi_qsfp0_rready), // DMA Access .axi_hp_araddr (axi_hp0_araddr), .axi_hp_arburst (axi_hp0_arburst), .axi_hp_arcache (axi_hp0_arcache), .axi_hp_arlen (axi_hp0_arlen), .axi_hp_arlock (axi_hp0_arlock), .axi_hp_arprot (axi_hp0_arprot), .axi_hp_arqos (axi_hp0_arqos), .axi_hp_arready (axi_hp0_arready), .axi_hp_arsize (axi_hp0_arsize), .axi_hp_arvalid (axi_hp0_arvalid), .axi_hp_awaddr (axi_hp0_awaddr), .axi_hp_awburst (axi_hp0_awburst), .axi_hp_awcache (axi_hp0_awcache), .axi_hp_awlen (axi_hp0_awlen), .axi_hp_awlock (axi_hp0_awlock), .axi_hp_awprot (axi_hp0_awprot), .axi_hp_awqos (axi_hp0_awqos), .axi_hp_awready (axi_hp0_awready), .axi_hp_awsize (axi_hp0_awsize), .axi_hp_awvalid (axi_hp0_awvalid), .axi_hp_bready (axi_hp0_bready), .axi_hp_bresp (axi_hp0_bresp), .axi_hp_bvalid (axi_hp0_bvalid), .axi_hp_rdata (axi_hp0_rdata), .axi_hp_rlast (axi_hp0_rlast), .axi_hp_rready (axi_hp0_rready), .axi_hp_rresp (axi_hp0_rresp), .axi_hp_rvalid (axi_hp0_rvalid), .axi_hp_wdata (axi_hp0_wdata), .axi_hp_wlast (axi_hp0_wlast), .axi_hp_wready (axi_hp0_wready), .axi_hp_wstrb (axi_hp0_wstrb), .axi_hp_wvalid (axi_hp0_wvalid), // Transceivers .tx_p (qsfp0_tx_p), .tx_n (qsfp0_tx_n), .rx_p (qsfp0_rx_p), .rx_n (qsfp0_rx_n), // Ethernet to CHDR .e2v_tdata (e2v_tdata [0*CHDR_W*4 +: CHDR_W*4]), .e2v_tlast (e2v_tlast [0* 4 +: 4]), .e2v_tvalid (e2v_tvalid [0* 4 +: 4]), .e2v_tready (e2v_tready [0* 4 +: 4]), // CHDR to Ethernet .v2e_tdata (v2e_tdata [0*CHDR_W*4 +: CHDR_W*4]), .v2e_tlast (v2e_tlast [0* 4 +: 4]), .v2e_tvalid (v2e_tvalid [0* 4 +: 4]), .v2e_tready (v2e_tready [0* 4 +: 4]), // Misc .eth_rx_irq (eth0_rx_irq), .eth_tx_irq (eth0_tx_irq), .device_id (device_id), .rx_rec_clk_out (), .port_info_0 (qsfp_port_0_0_info), .port_info_1 (qsfp_port_0_1_info), .port_info_2 (qsfp_port_0_2_info), .port_info_3 (qsfp_port_0_3_info), .link_up (eth0_link_up), .activity (eth0_activity) ); x4xx_qsfp_wrapper_temp #( `ifdef QSFP1_0 .PROTOCOL0 (`QSFP1_0), `endif `ifdef QSFP1_1 .PROTOCOL1 (`QSFP1_1), `endif `ifdef QSFP1_2 .PROTOCOL2 (`QSFP1_2), `endif `ifdef QSFP1_3 .PROTOCOL3 (`QSFP1_3), `endif .CPU_W (CPU_W), .CHDR_W (CHDR_W), .BYTE_MTU (BYTE_MTU), .PORTNUM (1) ) x4xx_qsfp_wrapper_1 ( .areset (areset), .refclk_p (MGT_REFCLK_LMK3_P), .refclk_n (MGT_REFCLK_LMK3_N), .clk100 (clk100), // IP configured for 100 MHz DClk .bus_rst (clk200_rst), .bus_clk (clk200), .clk40_rst (clk40_rst), .clk40 (clk40), //Register Access .s_axi_awaddr (axi_qsfp1_awaddr), .s_axi_awvalid (axi_qsfp1_awvalid), .s_axi_awready (axi_qsfp1_awready), .s_axi_wdata (axi_qsfp1_wdata), .s_axi_wstrb (axi_qsfp1_wstrb), .s_axi_wvalid (axi_qsfp1_wvalid), .s_axi_wready (axi_qsfp1_wready), .s_axi_bresp (axi_qsfp1_bresp), .s_axi_bvalid (axi_qsfp1_bvalid), .s_axi_bready (axi_qsfp1_bready), .s_axi_araddr (axi_qsfp1_araddr), .s_axi_arvalid (axi_qsfp1_arvalid), .s_axi_arready (axi_qsfp1_arready), .s_axi_rdata (axi_qsfp1_rdata), .s_axi_rresp (axi_qsfp1_rresp), .s_axi_rvalid (axi_qsfp1_rvalid), .s_axi_rready (axi_qsfp1_rready), // DMA Access .axi_hp_araddr (axi_hp1_araddr), .axi_hp_arburst (axi_hp1_arburst), .axi_hp_arcache (axi_hp1_arcache), .axi_hp_arlen (axi_hp1_arlen), .axi_hp_arlock (axi_hp1_arlock), .axi_hp_arprot (axi_hp1_arprot), .axi_hp_arqos (axi_hp1_arqos), .axi_hp_arready (axi_hp1_arready), .axi_hp_arsize (axi_hp1_arsize), .axi_hp_arvalid (axi_hp1_arvalid), .axi_hp_awaddr (axi_hp1_awaddr), .axi_hp_awburst (axi_hp1_awburst), .axi_hp_awcache (axi_hp1_awcache), .axi_hp_awlen (axi_hp1_awlen), .axi_hp_awlock (axi_hp1_awlock), .axi_hp_awprot (axi_hp1_awprot), .axi_hp_awqos (axi_hp1_awqos), .axi_hp_awready (axi_hp1_awready), .axi_hp_awsize (axi_hp1_awsize), .axi_hp_awvalid (axi_hp1_awvalid), .axi_hp_bready (axi_hp1_bready), .axi_hp_bresp (axi_hp1_bresp), .axi_hp_bvalid (axi_hp1_bvalid), .axi_hp_rdata (axi_hp1_rdata), .axi_hp_rlast (axi_hp1_rlast), .axi_hp_rready (axi_hp1_rready), .axi_hp_rresp (axi_hp1_rresp), .axi_hp_rvalid (axi_hp1_rvalid), .axi_hp_wdata (axi_hp1_wdata), .axi_hp_wlast (axi_hp1_wlast), .axi_hp_wready (axi_hp1_wready), .axi_hp_wstrb (axi_hp1_wstrb), .axi_hp_wvalid (axi_hp1_wvalid), // Transceivers .tx_p (qsfp1_tx_p), .tx_n (qsfp1_tx_n), .rx_p (qsfp1_rx_p), .rx_n (qsfp1_rx_n), // Ethernet to CHDR .e2v_tdata (e2v_tdata [1*CHDR_W*4 +: CHDR_W*4]), .e2v_tlast (e2v_tlast [1* 4 +: 4]), .e2v_tvalid (e2v_tvalid [1* 4 +: 4]), .e2v_tready (e2v_tready [1* 4 +: 4]), // CHDR to Ethernet .v2e_tdata (v2e_tdata [1*CHDR_W*4 +: CHDR_W*4]), .v2e_tlast (v2e_tlast [1* 4 +: 4]), .v2e_tvalid (v2e_tvalid [1* 4 +: 4]), .v2e_tready (v2e_tready [1* 4 +: 4]), // Misc .eth_rx_irq (eth1_rx_irq), .eth_tx_irq (eth1_tx_irq), .device_id (device_id), .rx_rec_clk_out (rx_rec_clk_out1), .port_info_0 (qsfp_port_1_0_info), .port_info_1 (qsfp_port_1_1_info), .port_info_2 (qsfp_port_1_2_info), .port_info_3 (qsfp_port_1_3_info), .link_up (eth1_link_up), .activity (eth1_activity) ); //--------------------------------------------------------------------------- // Internal Ethernet Interface //--------------------------------------------------------------------------- // CHDR DMA bus (clk200 domain) wire [CHDR_W-1:0] e2v_dma_tdata; wire e2v_dma_tlast; wire e2v_dma_tready; wire e2v_dma_tvalid; wire [CHDR_W-1:0] v2e_dma_tdata; wire v2e_dma_tlast; wire v2e_dma_tready; wire v2e_dma_tvalid; eth_ipv4_internal #( .CHDR_W (CHDR_W), .BYTE_MTU (BYTE_MTU), .DWIDTH (REG_DWIDTH), .AWIDTH (REG_AWIDTH), .PORTNUM (8'd0), .RFNOC_PROTOVER (RFNOC_PROTOVER) ) eth_ipv4_internal_i ( .bus_clk (clk200), .bus_rst (clk200_rst), .s_axi_aclk (clk40), .s_axi_aresetn (clk40_rstn), .s_axi_awaddr (axi_eth_internal_awaddr[REG_AWIDTH-1:0]), .s_axi_awvalid (axi_eth_internal_awvalid), .s_axi_awready (axi_eth_internal_awready), .s_axi_wdata (axi_eth_internal_wdata), .s_axi_wstrb (axi_eth_internal_wstrb), .s_axi_wvalid (axi_eth_internal_wvalid), .s_axi_wready (axi_eth_internal_wready), .s_axi_bresp (axi_eth_internal_bresp), .s_axi_bvalid (axi_eth_internal_bvalid), .s_axi_bready (axi_eth_internal_bready), .s_axi_araddr (axi_eth_internal_araddr[REG_AWIDTH-1:0]), .s_axi_arvalid (axi_eth_internal_arvalid), .s_axi_arready (axi_eth_internal_arready), .s_axi_rdata (axi_eth_internal_rdata), .s_axi_rresp (axi_eth_internal_rresp), .s_axi_rvalid (axi_eth_internal_rvalid), .s_axi_rready (axi_eth_internal_rready), .e2h_tdata (e2h_dma_tdata), .e2h_tkeep (e2h_dma_tkeep), .e2h_tlast (e2h_dma_tlast), .e2h_tvalid (e2h_dma_tvalid), .e2h_tready (e2h_dma_tready), .h2e_tdata (h2e_dma_tdata), .h2e_tkeep (h2e_dma_tkeep), .h2e_tlast (h2e_dma_tlast), .h2e_tvalid (h2e_dma_tvalid), .h2e_tready (h2e_dma_tready), .e2v_tdata (e2v_dma_tdata), .e2v_tlast (e2v_dma_tlast), .e2v_tvalid (e2v_dma_tvalid), .e2v_tready (e2v_dma_tready), .v2e_tdata (v2e_dma_tdata), .v2e_tlast (v2e_dma_tlast), .v2e_tvalid (v2e_dma_tvalid), .v2e_tready (v2e_dma_tready), .device_id (device_id) ); //--------------------------------------------------------------------------- // CPLD Interface //--------------------------------------------------------------------------- wire [COMPONENT_VERSIONS_SIZE-1:0] cpld_ifc_version; // Because time increments by SPC, we can ignore the least-significant bits // that don't change in the radio's timestamp. assign time_ignore_bits = $clog2(RADIO_SPC); cpld_interface cpld_interface_i ( .s_axi_aclk (clk40), .s_axi_aresetn (clk40_rstn), .pll_ref_clk (pll_ref_clk), .radio_clk (data_clk), .ctrlport_rst (prc_rst), .radio_time (radio_time), .radio_time_stb (radio_time_stb), .time_ignore_bits (time_ignore_bits), .s_axi_awaddr (m_axi_mpm_ep_awaddr[16:0]), .s_axi_awvalid (m_axi_mpm_ep_awvalid), .s_axi_awready (m_axi_mpm_ep_awready), .s_axi_wdata (m_axi_mpm_ep_wdata), .s_axi_wstrb (m_axi_mpm_ep_wstrb), .s_axi_wvalid (m_axi_mpm_ep_wvalid), .s_axi_wready (m_axi_mpm_ep_wready), .s_axi_bresp (m_axi_mpm_ep_bresp), .s_axi_bvalid (m_axi_mpm_ep_bvalid), .s_axi_bready (m_axi_mpm_ep_bready), .s_axi_araddr (m_axi_mpm_ep_araddr[16:0]), .s_axi_arvalid (m_axi_mpm_ep_arvalid), .s_axi_arready (m_axi_mpm_ep_arready), .s_axi_rdata (m_axi_mpm_ep_rdata), .s_axi_rresp (m_axi_mpm_ep_rresp), .s_axi_rvalid (m_axi_mpm_ep_rvalid), .s_axi_rready (m_axi_mpm_ep_rready), .s_ctrlport_req_wr (), .s_ctrlport_req_rd (), .s_ctrlport_req_addr (), .s_ctrlport_req_data (), .s_ctrlport_req_byte_en (), .s_ctrlport_req_has_time (), .s_ctrlport_req_time (), .s_ctrlport_resp_ack (), .s_ctrlport_resp_status (), .s_ctrlport_resp_data (), .ss ({PL_CPLD_CS1_n, PL_CPLD_CS0_n}), .sclk (PL_CPLD_SCLK), .mosi (PL_CPLD_MOSI), .miso (PL_CPLD_MISO), .qsfp0_led_active (eth0_activity), .qsfp0_led_link (eth0_link_up), .qsfp1_led_active (eth1_activity), .qsfp1_led_link (eth1_link_up), .ipass_present_n (2'b11), .version_info (cpld_ifc_version) ); //--------------------------------------------------------------------------- // X4XX Core //--------------------------------------------------------------------------- wire [32*RADIO_SPC*NUM_CHANNELS-1:0] rx_data_iq, rx_data_qi; wire [ NUM_CHANNELS-1:0] rx_stb; wire [32*RADIO_SPC*NUM_CHANNELS-1:0] tx_data_iq, tx_data_qi; wire [ NUM_CHANNELS-1:0] tx_stb; wire [ 11:0] gpio_out_a; wire [ 11:0] gpio_out_b; wire [ 11:0] gpio_en_a; wire [ 11:0] gpio_en_b; wire mfg_test_en_fabric_clk; wire mfg_test_en_gty_rcv_clk; // Map RFDC ports to x4xx_core ports // IMPORTANT! For ZBX RevB, there is a RX channel swap in layout // that we need to correct for here in HDL. assign radio_clk = data_clk; assign radio_clk_2x = data_clk_2x; assign rx_data_qi = { adc_data_out_tdata [2], adc_data_out_tdata [3], adc_data_out_tdata [0], adc_data_out_tdata [1] }; assign rx_stb = { adc_data_out_tvalid[2], adc_data_out_tvalid[3], adc_data_out_tvalid[0], adc_data_out_tvalid[1] }; assign { dac_data_in_tdata[3], dac_data_in_tdata[2], dac_data_in_tdata[1], dac_data_in_tdata[0] } = tx_data_qi; // Tie flow control signals (not existent in downstream logic). TX chain // always provides valid data when the rf_core is ready to receive. assign dac_data_in_tvalid = {NUM_CHANNELS{1'b1}}; assign tx_stb = dac_data_in_tready; // DIO tristate buffers genvar i; generate for (i=0; i<12; i=i+1) begin: dio_tristate_gen assign DIOA_FPGA[i] = (gpio_en_a[i]) ? gpio_out_a[i] : 1'bz; assign DIOB_FPGA[i] = (gpio_en_b[i]) ? gpio_out_b[i] : 1'bz; end endgenerate // The RFNoC HDL assumes the data to be ordered with I in the MSBs and Q in // the LSBs, whereas the interface of rf_core assumes that Q is in MSBs and I // is in the LSBs. Here we swap I and Q to match the ordering of each // interface. generate for (i=0; i < RADIO_SPC*NUM_CHANNELS; i=i+1) begin : gen_iq_swap assign rx_data_iq[i*32 +: 32] = { rx_data_qi[i*32 +: 16], rx_data_qi[i*32+16 +: 16] }; assign tx_data_qi[i*32 +: 32] = { tx_data_iq[i*32 +: 16], tx_data_iq[i*32+16 +: 16] }; end endgenerate // Version information mapping // Each component consists of a 96-bit vector (refer to versioning_utils.vh) // // Build FPGA version wire [COMPONENT_VERSIONS_SIZE-1:0] fpga_version; assign fpga_version = build_component_versions( FPGA_VERSION_LAST_MODIFIED_TIME, build_version( FPGA_OLDEST_COMPATIBLE_VERSION_MAJOR, FPGA_OLDEST_COMPATIBLE_VERSION_MINOR, FPGA_OLDEST_COMPATIBLE_VERSION_BUILD ), build_version( FPGA_CURRENT_VERSION_MAJOR, FPGA_CURRENT_VERSION_MINOR, FPGA_CURRENT_VERSION_BUILD ) ); // wire [64*COMPONENT_VERSIONS_SIZE-1:0] x4xx_core_version_info; assign x4xx_core_version_info[COMPONENT_VERSIONS_SIZE*FPGA_VERSION_INDEX +: COMPONENT_VERSIONS_SIZE] = fpga_version; assign x4xx_core_version_info[COMPONENT_VERSIONS_SIZE*CPLD_IFC_INDEX +: COMPONENT_VERSIONS_SIZE] = cpld_ifc_version; assign x4xx_core_version_info[COMPONENT_VERSIONS_SIZE*DB0_RF_CORE_INDEX +: COMPONENT_VERSIONS_SIZE] = rf_core_version[0]; assign x4xx_core_version_info[COMPONENT_VERSIONS_SIZE*DB1_RF_CORE_INDEX +: COMPONENT_VERSIONS_SIZE] = rf_core_version[1]; assign x4xx_core_version_info[COMPONENT_VERSIONS_SIZE*DB0_GPIO_IFC_INDEX +: COMPONENT_VERSIONS_SIZE] = db_gpio_ifc_version[0]; assign x4xx_core_version_info[COMPONENT_VERSIONS_SIZE*DB1_GPIO_IFC_INDEX +: COMPONENT_VERSIONS_SIZE] = db_gpio_ifc_version[1]; x4xx_core #( .NUM_DBOARDS (NUM_DBOARDS), .REG_DWIDTH (REG_DWIDTH), .REG_AWIDTH (REG_AWIDTH), .CHDR_CLK_RATE (CHDR_CLK_RATE), .NUM_CHANNELS (NUM_CHANNELS), .CHDR_W (CHDR_W), .MTU (CHDR_MTU), .RFNOC_PROTOVER (RFNOC_PROTOVER), .RADIO_SPC (RADIO_SPC) ) x4xx_core_i ( .radio_clk (radio_clk), .radio_rst (radio_rst), .radio_clk_2x (radio_clk_2x), .rfnoc_chdr_clk (clk200), .rfnoc_chdr_rst (clk200_rst), .rfnoc_ctrl_clk (clk40), .rfnoc_ctrl_rst (clk40_rst), .s_axi_aclk (clk40), .s_axi_aresetn (clk40_rstn), .s_axi_awaddr (axi_core_awaddr[REG_AWIDTH-1:0]), .s_axi_awvalid (axi_core_awvalid), .s_axi_awready (axi_core_awready), .s_axi_wdata (axi_core_wdata), .s_axi_wstrb (axi_core_wstrb), .s_axi_wvalid (axi_core_wvalid), .s_axi_wready (axi_core_wready), .s_axi_bresp (axi_core_bresp), .s_axi_bvalid (axi_core_bvalid), .s_axi_bready (axi_core_bready), .s_axi_araddr (axi_core_araddr[REG_AWIDTH-1:0]), .s_axi_arvalid (axi_core_arvalid), .s_axi_arready (axi_core_arready), .s_axi_rdata (axi_core_rdata), .s_axi_rresp (axi_core_rresp), .s_axi_rvalid (axi_core_rvalid), .s_axi_rready (axi_core_rready), .pps_radioclk (pps_radioclk), .pps_select (pps_select), .trig_io_select (trig_io_select), .pll_sync_trigger (pll_sync_trigger), .pll_sync_delay (pll_sync_delay), .pll_sync_done (pll_sync_done), .pps_brc_delay (pps_brc_delay), .pps_prc_delay (pps_prc_delay), .prc_rc_divider (prc_rc_divider), .pps_rc_enabled (pps_rc_enabled), .rx_data (rx_data_iq), .rx_stb (rx_stb), .rx_running (rx_running), .tx_data (tx_data_iq), .tx_stb (tx_stb), .tx_running (tx_running), .dmao_tdata (v2e_dma_tdata), .dmao_tlast (v2e_dma_tlast), .dmao_tvalid (v2e_dma_tvalid), .dmao_tready (v2e_dma_tready), .dmai_tdata (e2v_dma_tdata), .dmai_tlast (e2v_dma_tlast), .dmai_tvalid (e2v_dma_tvalid), .dmai_tready (e2v_dma_tready), .e2v_tdata (e2v_tdata), .e2v_tlast (e2v_tlast), .e2v_tvalid (e2v_tvalid), .e2v_tready (e2v_tready), .v2e_tdata (v2e_tdata), .v2e_tlast (v2e_tlast), .v2e_tvalid (v2e_tvalid), .v2e_tready (v2e_tready), .gpio_in_a (DIOA_FPGA), .gpio_in_b (DIOB_FPGA), .gpio_out_a (gpio_out_a), .gpio_out_b (gpio_out_b), .gpio_en_a (gpio_en_a), .gpio_en_b (gpio_en_b), .qsfp_port_0_0_info (qsfp_port_0_0_info), .qsfp_port_0_1_info (qsfp_port_0_1_info), .qsfp_port_0_2_info (qsfp_port_0_2_info), .qsfp_port_0_3_info (qsfp_port_0_3_info), .qsfp_port_1_0_info (qsfp_port_1_0_info), .qsfp_port_1_1_info (qsfp_port_1_1_info), .qsfp_port_1_2_info (qsfp_port_1_2_info), .qsfp_port_1_3_info (qsfp_port_1_3_info), .radio_time (radio_time), .radio_time_stb (radio_time_stb), .device_id (device_id), .mfg_test_en_fabric_clk (mfg_test_en_fabric_clk), .mfg_test_en_gty_rcv_clk (mfg_test_en_gty_rcv_clk), .fpga_aux_ref (FPGA_AUX_REF), .m_ctrlport_radio_req_wr ({ db_ctrlport_req_wr [1], db_ctrlport_req_wr [0] }), .m_ctrlport_radio_req_rd ({ db_ctrlport_req_rd [1], db_ctrlport_req_rd [0] }), .m_ctrlport_radio_req_addr ({ db_ctrlport_req_addr [1], db_ctrlport_req_addr [0] }), .m_ctrlport_radio_req_data ({ db_ctrlport_req_data [1], db_ctrlport_req_data [0] }), .m_ctrlport_radio_req_byte_en ({ db_ctrlport_req_byte_en [1], db_ctrlport_req_byte_en [0] }), .m_ctrlport_radio_req_has_time ({ db_ctrlport_req_has_time [1], db_ctrlport_req_has_time [0] }), .m_ctrlport_radio_req_time ({ db_ctrlport_req_time [1], db_ctrlport_req_time [0] }), .m_ctrlport_radio_resp_ack ({ db_ctrlport_resp_ack [1], db_ctrlport_resp_ack [0] }), .m_ctrlport_radio_resp_status ({ db_ctrlport_resp_status [1], db_ctrlport_resp_status [0] }), .m_ctrlport_radio_resp_data ({ db_ctrlport_resp_data [1], db_ctrlport_resp_data [0] }), .start_nco_reset (start_nco_reset), .nco_reset_done (nco_reset_done), .adc_reset_pulse (adc_reset_pulse), .dac_reset_pulse (dac_reset_pulse), .version_info (x4xx_core_version_info) ); //--------------------------------------------------------------------------- // eCPRI Clock Output Test //--------------------------------------------------------------------------- wire fabric_clk_oddr; wire mfg_test_en_fabric_clk_dc; wire mfg_test_en_gty_rcv_clk_dc; synchronizer #( .STAGES (2), .WIDTH (1), .INITIAL_VAL (1'h0) ) synchronizer_mfg_test_en_fabric_clk ( .clk (data_clk), .rst (1'b0), .in (mfg_test_en_fabric_clk), .out (mfg_test_en_fabric_clk_dc) ); synchronizer #( .STAGES (2), .WIDTH (1), .INITIAL_VAL (1'h0) ) synchronizer_mfg_test_en_gty_rcv_clk ( .clk (data_clk), .rst (1'b0), .in (mfg_test_en_gty_rcv_clk), .out (mfg_test_en_gty_rcv_clk_dc) ); ODDRE1 #( .SRVAL (1'b0) // Initializes the ODDRE1 Flip-Flops to 1'b0 ) oddre1_fabric_clk ( .Q (fabric_clk_oddr), // 1-bit output: Data output to IOB .C (data_clk), // 1-bit input: High-speed clock input .D1 (1'b0), // 1-bit input: Parallel data input 1 .D2 (mfg_test_en_fabric_clk_dc), // 1-bit input: Parallel data input 2 .SR (1'b0) // 1-bit input: Active High Async Reset ); OBUFDS obufds_fabric_clk ( .O (FABRIC_CLK_OUT_P), // 1-bit output: Diff_p output (connect directly to top-level port) .OB (FABRIC_CLK_OUT_N), // 1-bit output: Diff_n output (connect directly to top-level port) .I (fabric_clk_oddr) // 1-bit input: Buffer input ); // Requires QSFP1_0 because of limited input options for this buffer. // This output on (MGTREFCLK1 128)(QUAD128 is QSFP1). // The input is MGT_REFCLK_LMK3_P (MGT_REFCLK1 129)(QUAD 129 not used). `ifdef QSFP1_0 OBUFDS_GTE4 #( .REFCLK_EN_TX_PATH (1'b1), .REFCLK_ICNTL_TX (5'b00111) ) gty_rcv_clk_OBUFDS ( .O (GTY_RCV_CLK_P), // 1-bit output: Diff_p output (connect directly to top-level port) .OB (GTY_RCV_CLK_N), // 1-bit output: Diff_n output (connect directly to top-level port) .I (rx_rec_clk_out1), // 1-bit input: Buffer input .CEB (!mfg_test_en_gty_rcv_clk_dc) // 1-bit input: Clock Enable ); `endif endmodule `default_nettype wire //XmlParse xml_on // // // This documentation provides a description of the different register spaces available // for the USRP X4xx Open-Source FPGA target implementation, accessible through the // embedded ARM A53 processor in the RFSoC chip, and other UHD hosts. // // // // // // // // FPGA version.{BR/} // For guidance on when to update these revision numbers, // please refer to the register map documentation accordingly: //
  • Current version: @.VERSIONING_REGS_REGMAP..CURRENT_VERSION //
  • Oldest compatible version: @.VERSIONING_REGS_REGMAP..OLDEST_COMPATIBLE_VERSION //
  • Version last modified: @.VERSIONING_REGS_REGMAP..VERSION_LAST_MODIFIED // // // // // // // // // // // //XmlParse xml_off