module gen_ddrlvds ( // 1X Radio Clock input tx_clk_1x, // 2X Radio clock input tx_clk_2x, // Clk to drive DCI ODDR. This is a phase shifted version of // tx_clk_2x. The phase shift is to center the DCI edge in the // valid window of the data in the DAC. input tx_dci_clk, // Reset signal synchronous to radio clock input reset, // Source synchronous differential clocks to DAC output tx_clk_2x_p, output tx_clk_2x_n, // Differential frame sync to DAC output tx_frame_p, output tx_frame_n, // Differential byte wide data to DAC. // Alternates I[15:8],I[7:0],Q[15:8],Q[7:0] output [7:0] tx_d_p, output [7:0] tx_d_n, // Input data input [15:0] i, input [15:0] q, // Rising edge sampled on sync_dacs triggers frame sync sequence input sync_dacs ); reg [15:0] i_reg, q_reg; reg [15:0] i_2x, q_2x; reg rising_edge; wire [15:0] i_and_q_2x; reg sync_2x; genvar z; wire [7:0] tx_int; wire tx_clk_2x_int; wire tx_frame_int; // Keep constraint to ensure these signals are not resource shared which can cause timing failures (* keep = "true" *) reg phase, phase_2x, sync_dacs_reg; wire phase_eq_phase2x = (phase == phase_2x); always @(posedge tx_clk_1x) if (reset) phase <= 1'b0; else phase <= ~phase; // // Pipeline input data so that 1x to 2x clock domain jump includes no logic external to this module. // always @(posedge tx_clk_1x) begin i_reg <= i; q_reg <= q; sync_dacs_reg <= sync_dacs; end always @(posedge tx_clk_2x) begin // Move 1x data to 2x domain, mostly just to add pipeline regs // for timing closure. i_2x <= i_reg; q_2x <= q_reg; // Sample phase to determine when 1x clock edges occur. // To sync multiple AD9146 DAC's an extended assertion of FRAME is required, // when sync flag set, squash one rising_edge assertion which causes a 3 word assertion of FRAME, // also reset sync flag. "sync_dacs" comes from 1x clk and pulse lasts 2 2x clock cycles...this is accounted for. sync_2x <= (phase_eq_phase2x && sync_2x) ? 1'b0 /*RESET */ : (sync_dacs_reg) ? 1'b1 /* SET */ : sync_2x /* HOLD */; rising_edge <= (phase_eq_phase2x && ~sync_2x); phase_2x <= phase; end // Interleave I and Q as SDR signals assign i_and_q_2x = rising_edge ? q_2x : i_2x; generate for(z = 0; z < 8; z = z + 1) begin : gen_pins OBUFDS obufds (.I(tx_int[z]), .O(tx_d_p[z]), .OB(tx_d_n[z])); ODDR #(.DDR_CLK_EDGE("SAME_EDGE")) oddr (.Q(tx_int[z]), .C(tx_clk_2x), .CE(1'b1), .D1(i_and_q_2x[z+8]), .D2(i_and_q_2x[z]), .S(1'b0), .R(1'b0)); end endgenerate // Generate framing signal to identify I and Q OBUFDS obufds_frame (.I(tx_frame_int), .O(tx_frame_p), .OB(tx_frame_n)); ODDR #(.DDR_CLK_EDGE("SAME_EDGE")) oddr_frame (.Q(tx_frame_int), .C(tx_clk_2x), .CE(1'b1), .D1(~rising_edge), .D2(~rising_edge), .S(1'b0), .R(1'b0)); // Source synchronous clk OBUFDS obufds_clk (.I(tx_clk_2x_int), .O(tx_clk_2x_p), .OB(tx_clk_2x_n)); ODDR #(.DDR_CLK_EDGE("SAME_EDGE")) oddr_clk (.Q(tx_clk_2x_int), .C(tx_dci_clk), .CE(1'b1), .D1(1'b1), .D2(1'b0), .S(1'b0), .R(1'b0)); endmodule // gen_ddrlvds