# # Copyright 2017 Ettus Research, A National Instruments Company # SPDX-License-Identifier: LGPL-3.0 # # Timing analysis is performed in "/n3xx/doc/mb_timing.xlsx". See # the spreadsheet for more details and explanations. #******************************************************************************* ## Asynchronous clock groups # All the clocks from the PS are async to everything else except clocks generated # from themselves. set_clock_groups -asynchronous -group [get_clocks clk100 -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks clk40 -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks bus_clk -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks meas_clk_ref -include_generated_clocks] #******************************************************************************* ## PPS Input Timing # The external PPS is synchronous to the external reference clock, which is expected to # be at 10 MHz. Given [setup, hold] of [5ns, 5ns] at the rear panel inputs of the N310, # we have an adequate data valid window at the FPGA. However, since we overconstrain the # reference clock to 25 MHz, we use the alternative period here for setup analysis. set_input_delay -clock ref_clk -min 4.651 [get_ports REF_1PPS_IN] set_input_delay -clock ref_clk -max [expr {$REF_CLK_PERIOD - 0.235}] [get_ports REF_1PPS_IN] # The GPS PPS is also synchronous to the external reference clock (since there is a # switch on the clock input outside the FPGA). Again, use the overconstrained period. set_input_delay -clock ref_clk -min 1.234 [get_ports GPS_1PPS] set_input_delay -clock ref_clk -max [expr {$REF_CLK_PERIOD - 2.111}] [get_ports GPS_1PPS] #******************************************************************************* ## White Rabbit DAC # Constrain the DIN and NSYNC bits around the clock output. No readback. set MAX_SKEW 5 set SETUP_SKEW [expr {($MAX_SKEW / 2)-0.5}] set HOLD_SKEW [expr {($MAX_SKEW / 2)+0.5}] set PORT_LIST [get_ports {WB_DAC_DIN WB_DAC_NCLR WB_DAC_NSYNC WB_DAC_NLDAC}] # Then add the output delay on each of the ports. set_output_delay -clock [get_clocks wr_bus_clk] -max -$SETUP_SKEW $PORT_LIST set_output_delay -add_delay -clock_fall -clock [get_clocks wr_bus_clk] -max -$SETUP_SKEW $PORT_LIST set_output_delay -clock [get_clocks wr_bus_clk] -min $HOLD_SKEW $PORT_LIST set_output_delay -add_delay -clock_fall -clock [get_clocks wr_bus_clk] -min $HOLD_SKEW $PORT_LIST # Finally, make both the setup and hold checks use the same launching and latching edges. set_multicycle_path -setup -to [get_clocks wr_bus_clk] -start 0 set_multicycle_path -hold -to [get_clocks wr_bus_clk] -1 # Remove analysis from the output "clock" pin. There are ways to do this using TCL, but # they aren't supported in XDC files... so we do it the old fashioned way. set_output_delay -clock [get_clocks async_out_clk] 0.000 $WR_OUT_CLK set_max_delay -to $WR_OUT_CLK 50.000 set_min_delay -to $WR_OUT_CLK 0.000 #******************************************************************************* ## MB Async Ins/Outs set ASYNC_MB_INPUTS [get_ports {SFP_*_LOS SFP_*_TXFAULT UNUSED_PIN_TDC*}] set_input_delay -clock [get_clocks async_in_clk] 0.000 $ASYNC_MB_INPUTS set_max_delay -from $ASYNC_MB_INPUTS 50.000 set_min_delay -from $ASYNC_MB_INPUTS 0.000 set ASYNC_MB_OUTPUTS [get_ports {*LED* SFP_*TXDISABLE UNUSED_PIN_TDC* \ FPGA_TEST[*]}] set_output_delay -clock [get_clocks async_out_clk] 0.000 $ASYNC_MB_OUTPUTS set_max_delay -to $ASYNC_MB_OUTPUTS 50.000 set_min_delay -to $ASYNC_MB_OUTPUTS 0.000 #******************************************************************************* ## Front Panel GPIO # These bits are driven from the DB-A radio clock. Although they are received async in # the outside world, they should be constrained in the FPGA to avoid any race # conditions. The best way to do this is a skew constraint across all the bits. set MAX_SKEW 10 set SETUP_SKEW [expr {($MAX_SKEW / 2)-0.5}] set HOLD_SKEW [expr {($MAX_SKEW / 2)+0.5}] set PORT_LIST [get_ports {FPGA_GPIO[*]}] # Then add the output delay on each of the ports. set_output_delay -clock [get_clocks fp_gpio_bus_clk] -max -$SETUP_SKEW $PORT_LIST set_output_delay -add_delay -clock_fall -clock [get_clocks fp_gpio_bus_clk] -max -$SETUP_SKEW $PORT_LIST set_output_delay -clock [get_clocks fp_gpio_bus_clk] -min $HOLD_SKEW $PORT_LIST set_output_delay -add_delay -clock_fall -clock [get_clocks fp_gpio_bus_clk] -min $HOLD_SKEW $PORT_LIST # Finally, make both the setup and hold checks use the same launching and latching edges. set_multicycle_path -setup -to [get_clocks fp_gpio_bus_clk] -start 0 set_multicycle_path -hold -to [get_clocks fp_gpio_bus_clk] -1 # Remove analysis from the output "clock" pin. There are ways to do this using TCL, but # they aren't supported in XDC files... so we do it the old fashioned way. set_output_delay -clock [get_clocks async_out_clk] 0.000 $FP_GPIO_CLK set_max_delay -to $FP_GPIO_CLK 50.000 set_min_delay -to $FP_GPIO_CLK 0.000 # All inputs on this interface are async. set_input_delay -clock [get_clocks async_in_clk] 0.000 $PORT_LIST set_max_delay -from $PORT_LIST 50.000 set_min_delay -from $PORT_LIST 0.000 #****************************************************************************** ## Reset Sync False Path set_false_path -to [get_pins */synchronizer_false_path/stages[0].value_reg[0]/D] set_false_path -to [get_pins */synchronizer_false_path/stages[0].value_reg[0]/C]