#!/usr/bin/env python # # Copyright 2016 Ettus Research # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # import rfnocsim import math import ni_hw_models as hw class ColGlobals(): BPI = 4 # Number of bytes per sample or coefficient BPP = 1024 # Bytes per packet MIN_SAMP_HOPS = 1 # Minimum number of hops an RX sample will take before it is used to compute a PP MAX_SAMP_HOPS = 3 # Maximum number of hops an RX sample will take before it is used to compute a PP MIN_PP_HOPS = 0 # Minimum number of hops a PP will take before it is used to compute a TX sample MAX_PP_HOPS = 1 # Maximum number of hops a PP will take before it is used to compute a TX sample ELASTIC_BUFF_FULLNESS = 0.5 class PartialContribComputer(rfnocsim.Function): """ Simulation model for function that computes the contribution of radio chans on other radio chans. This function computes a NxM dot product of FFTs, one bin at a time. Features: - Supports computing the product in multiple cycles (for resource reuse) - Supports deinterleaving data in streams (i.e. is Radio 0+1 data comes in thru the same ethernet) Args: sim_core: Simulator core object name: Name of this function size: Number of chans (inputs) for which contribution partial products are computed fft_size: The length of the FFT in bins dst_chans: Computes the contribution of the input chans on these dst_chans items_per_stream: How many channels per stream can this function deinterleave? ticks_per_exec: How many ticks for the function to generate a full output set """ def __init__(self, sim_core, name, size, dst_chans, items_per_stream, app_settings): ticks_per_exec = 1 # This function will run once every tick. No multi-cycle paths here. rfnocsim.Function.__init__(self, sim_core, name, size, int(len(dst_chans)/items_per_stream), ticks_per_exec) self.items_per_stream = items_per_stream # Each stream contains data from n radio chans self.dst_chans = dst_chans # Where should the individual products go? # This block has to buffer enough data to ensure # sample alignment. How deep should those buffers be? sync_buff_depth = (((ColGlobals.MAX_SAMP_HOPS - ColGlobals.MIN_SAMP_HOPS) * hw.Bee7Fpga.IO_LN_LATENCY * float(app_settings['samp_rate'])) / ColGlobals.ELASTIC_BUFF_FULLNESS) # Adder latency: log2(radix) adder stages + 2 pipeline flops latency = math.ceil(math.log(size/len(dst_chans), 2)) + 2 # Synchronization latency based on buffer size latency += (sync_buff_depth * ColGlobals.ELASTIC_BUFF_FULLNESS) * (self.get_tick_rate() / float(app_settings['samp_rate'])) # Packet alignment latency latency += ColGlobals.BPP * (self.get_tick_rate() / hw.Bee7Fpga.IO_LN_BW) self.estimate_resources(size*items_per_stream, len(dst_chans), app_settings, sync_buff_depth*size, latency) def estimate_resources(self, N, M, app_settings, sync_buff_total_samps, pre_filt_latency): rscrs = rfnocsim.HwRsrcs() DSP_BLOCKS_PER_MAC = 3 # DSP blocks for a scaled complex MAC MAX_DSP_RATE = 400e6 # Max clock rate for a DSP48E block MAX_UNROLL_DEPTH = 2 # How many taps (or FFT bins) to compute in parallel? COEFF_SETS = 1 # We need two copies of coefficients one live # and one buffered for dynamic reload. If both # live in BRAM, this should be 2. If the live # set lives in registers, this should be 1 samp_rate = float(app_settings['samp_rate']) dsp_cyc_per_samp = MAX_DSP_RATE / samp_rate if app_settings['domain'] == 'time': fir_taps = app_settings['fir_taps'] if (fir_taps <= dsp_cyc_per_samp): unroll_factor = 1 dsp_rate = samp_rate * fir_taps else: unroll_factor = math.ceil((1.0 * fir_taps) / dsp_cyc_per_samp) dsp_rate = MAX_DSP_RATE if (unroll_factor > MAX_UNROLL_DEPTH): raise self.SimCompError('Too many FIR coefficients! Reached loop unroll limit.') rscrs.add('DSP', DSP_BLOCKS_PER_MAC * unroll_factor * N * M) rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * app_settings['fir_dly_line'] / hw.Bee7Fpga.BRAM_BYTES) * N * M) # FIR delay line memory rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * COEFF_SETS * fir_taps * unroll_factor * N * M / hw.Bee7Fpga.BRAM_BYTES)) # Coefficient storage samp_per_tick = dsp_rate / self.get_tick_rate() self.update_latency(func=pre_filt_latency + (fir_taps / (samp_per_tick * unroll_factor))) else: fft_size = app_settings['fft_size'] rscrs.add('DSP', DSP_BLOCKS_PER_MAC * N * M * MAX_UNROLL_DEPTH) # MACs rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * N * M * fft_size * COEFF_SETS / hw.Bee7Fpga.BRAM_BYTES)) # Coeff storage samp_per_tick = MAX_DSP_RATE / self.get_tick_rate() self.update_latency(func=pre_filt_latency + (fft_size / samp_per_tick)) rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * sync_buff_total_samps / hw.Bee7Fpga.BRAM_BYTES)) self.update_rsrcs(rscrs) def do_func(self, in_data): """ Gather FFT data from "size" channels, compute a dot product with the coeffieicnt matrix and spit the partial products out. The dot product is computed for each FFT bin serially. """ out_data = list() src_chans = [] # Iterate over each input for di in in_data: if len(di.items) != self.items_per_stream: raise RuntimeError('Incorrect items per stream. Expecting ' + str(self.items_per_stream)) # Deinterleave data for do in range(len(di.items)): (sid, coords) = rfnocsim.DataStream.submatrix_parse(di.items[do]) if sid != 'rx': raise RuntimeError('Incorrect items. Expecting radio data (rx) but got ' + sid) src_chans.extend(coords[0]) bpi = in_data[0].bpi count = in_data[0].count # Iterate through deinterleaved channels for i in range(0, len(self.dst_chans), self.items_per_stream): items = [] for j in range(self.items_per_stream): # Compute partial products: # pp = partial product of "src_chans" on "self.dst_chans[i+j]" items.append(rfnocsim.DataStream.submatrix_gen('pp', [src_chans, self.dst_chans[i+j]])) out_data.append(self.create_outdata_stream(bpi, items, count)) return out_data class PartialContribCombiner(rfnocsim.Function): """ Simulation model for function that adds multiple partial contributions (products) into a larger partial product. The combiner can optionally reduce a very large product into a smaller one. Ex: pp[31:0,i] (contribution on chan 0..31 on i) can alias to tx[i] if there are 32 channels. Args: sim_core: Simulator core object name: Name of this function radix: Number of partial products that are combined (Number of inputs) reducer_filter: A tuple that represents what pp channels to alias to what items_per_stream: How many channels per stream can this function deinterleave? """ def __init__(self, sim_core, name, radix, app_settings, reducer_filter = (None, None), items_per_stream = 2): rfnocsim.Function.__init__(self, sim_core, name, radix, 1) self.radix = radix self.reducer_filter = reducer_filter self.items_per_stream = items_per_stream # This block has to buffer enough data to ensure # sample alignment. How deep should those buffers be? sync_buff_depth = (((ColGlobals.MAX_PP_HOPS - ColGlobals.MIN_PP_HOPS) * hw.Bee7Fpga.IO_LN_LATENCY * float(app_settings['samp_rate'])) / ColGlobals.ELASTIC_BUFF_FULLNESS) # Figure out latency based on sync buffer and delay line latency = math.ceil(math.log(radix, 2)) + 2 # log2(radix) adder stages + 2 pipeline flops # Synchronization latency based on buffer size latency += (sync_buff_depth * ColGlobals.ELASTIC_BUFF_FULLNESS) * (self.get_tick_rate() / float(app_settings['samp_rate'])) # Packet alignment latency latency += ColGlobals.BPP * (self.get_tick_rate() / hw.Bee7Fpga.IO_LN_BW) self.update_latency(func=latency) self.estimate_resources(radix, sync_buff_depth) def estimate_resources(self, radix, sync_buff_depth): rscrs = rfnocsim.HwRsrcs() # Assume that pipelined adders are inferred in logic (not DSP) # Assume that buffering uses BRAM rscrs.add('BRAM_18kb', math.ceil(ColGlobals.BPI * sync_buff_depth * radix / hw.Bee7Fpga.BRAM_BYTES)) self.update_rsrcs(rscrs) def do_func(self, in_data): """ Gather partial dot products from inputs, add them together and spit them out Perform sanity check to ensure that we are adding the correct things """ out_chans = dict() # Iterate over each input for di in in_data: if len(di.items) != self.items_per_stream: raise self.SimCompError('Incorrect items per stream. Expecting ' + str(self.items_per_stream)) # Deinterleave data for do in range(len(di.items)): (sid, coords) = rfnocsim.DataStream.submatrix_parse(di.items[do]) if sid == 'null': continue elif sid != 'pp': raise self.SimCompError('Incorrect items. Expecting partial produts (pp) but got ' + sid) if len(coords[1]) != 1: raise self.SimCompError('Incorrect partial product. Target must be a single channel') if coords[1][0] in out_chans: out_chans[coords[1][0]].extend(coords[0]) else: out_chans[coords[1][0]] = coords[0] # Check if keys (targets) for partial products == items_per_stream if len(list(out_chans.keys())) != self.items_per_stream: raise self.SimCompError('Inconsistent partial products. Too many targets.') # Verify that all influencers for each target are consistent if not all(x == list(out_chans.values())[0] for x in list(out_chans.values())): raise self.SimCompError('Inconsistent partial products. Influencers dont match.') contrib_chans = list(out_chans.values())[0] # Combine partial products and return out_items = [] for ch in list(out_chans.keys()): if sorted(self.reducer_filter[0]) == sorted(contrib_chans): out_items.append(rfnocsim.DataStream.submatrix_gen(self.reducer_filter[1], [ch])) else: out_items.append(rfnocsim.DataStream.submatrix_gen('pp', [list(out_chans.values())[0], ch])) return self.create_outdata_stream(in_data[0].bpi, out_items, in_data[0].count) # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # NOTE: The Torus Topology has not been maintained. Use at your own risk # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! class Topology_2D_4x4_Torus: @classmethod def config_bitstream(cls, bee7fpga, app_settings, in_chans, out_chans, total_num_chans, is_radio_node): if len(in_chans) != 64: raise bee7fpga.SimCompError('in_chans must be 64 channels wide. Got ' + str(len(in_chans))) if len(out_chans) != 16: raise bee7fpga.SimCompError('out_chans must be 16 channels wide. Got ' + str(len(out_chans))) GRP_LEN = 16 / 2 # 2 radio channesl per USRP # Broadcast raw data streams to all internal and external FPGAs for i in range(GRP_LEN): in_ln = bee7fpga.EXT_IO_LANES[bee7fpga.BP_BASE+i] bee7fpga.sim_core.connect(bee7fpga.serdes_i[in_ln], 0, bee7fpga.serdes_o[bee7fpga.EW_IO_LANES[i]], 0) bee7fpga.sim_core.connect(bee7fpga.serdes_i[in_ln], 0, bee7fpga.serdes_o[bee7fpga.NS_IO_LANES[i]], 0) bee7fpga.sim_core.connect(bee7fpga.serdes_i[in_ln], 0, bee7fpga.serdes_o[bee7fpga.XX_IO_LANES[i]], 0) bee7fpga.sim_core.connect(bee7fpga.serdes_i[in_ln], 0, bee7fpga.serdes_o[bee7fpga.EXT_IO_LANES[bee7fpga.BP_BASE+8+i]], 0) # Create an internal bus to hold the generated partial products bee7fpga.pp_bus = dict() for i in range(GRP_LEN): bee7fpga.pp_bus[i] = rfnocsim.Channel(bee7fpga.sim_core, '%s/_INTERNAL_PP_%02d' % (bee7fpga.name,i)) # We need to compute partial products of the data that is broadcast to us # pp_input_lanes represents the IO lanes that hold this data pp_input_lanes = bee7fpga.EXT_IO_LANES[bee7fpga.BP_BASE:bee7fpga.BP_BASE+GRP_LEN] + \ bee7fpga.EW_IO_LANES[0:GRP_LEN] + bee7fpga.NS_IO_LANES[0:GRP_LEN] + bee7fpga.XX_IO_LANES[0:GRP_LEN] # The function that computes the partial products func = PartialContribComputer( sim_core=bee7fpga.sim_core, name=bee7fpga.name + '/pp_computer/', size=len(pp_input_lanes), dst_chans=out_chans, items_per_stream=2, app_settings=app_settings) for i in range(len(pp_input_lanes)): bee7fpga.sim_core.connect(bee7fpga.serdes_i[pp_input_lanes[i]], 0, func, i) for i in range(GRP_LEN): #Outputs of function bee7fpga.sim_core.connect(func, i, bee7fpga.pp_bus[i], 0) bee7fpga.add_function(func) # Add a function combine all partial products (one per IO lane) for i in range(GRP_LEN): func = PartialContribCombiner( sim_core=bee7fpga.sim_core, name=bee7fpga.name + '/pp_combiner_%d/' % (i), radix=2, app_settings=app_settings, reducer_filter=(list(range(total_num_chans)), 'tx')) # Partial products generated internally have to be added to a partial # sum coming from outside bee7fpga.sim_core.connect(bee7fpga.serdes_i[bee7fpga.EXT_IO_LANES[bee7fpga.FP_BASE+i]], 0, func, 0) bee7fpga.sim_core.connect(bee7fpga.pp_bus[i], 0, func, 1) # If this FPGA is hooked up to the radio then send partial products # back to when samples came from. Otherwise send it out to the PP output bus if is_radio_node: bee7fpga.sim_core.connect(func, 0, bee7fpga.serdes_o[bee7fpga.EXT_IO_LANES[bee7fpga.BP_BASE+i]], 0) else: bee7fpga.sim_core.connect(func, 0, bee7fpga.serdes_o[bee7fpga.EXT_IO_LANES[bee7fpga.FP_BASE+8+i]], 0) bee7fpga.add_function(func) @classmethod def connect(cls, sim_core, usrps, bee7blades, hosts, app_settings): USRPS_PER_BLADE = 32 # Create NULL source of "zero" partial products null_items = ['null[(0);(0)]', 'null[(0);(0)]'] null_src = rfnocsim.Producer(sim_core, 'NULL_SRC', 4, null_items) if app_settings['domain'] == 'frequency': null_src.set_rate(app_settings['samp_rate']*(1.0 + (float(app_settings['fft_overlap'])/app_settings['fft_size']))) else: null_src.set_rate(app_settings['samp_rate']) # Reshape BEE7s # The blades are arranged in 2D Torus network with 4 blades across # each dimension (4x4 = 16) bee7grid = [] for r in range(4): bee7row = [] for c in range(4): blade = bee7blades[4*r + c] pp_chans = list(range(64*c,64*(c+1))) for i in range(4): Topology_2D_4x4_Torus.config_bitstream( blade.fpgas[i], app_settings, pp_chans, pp_chans[i*16:(i+1)*16], 256, (r==c)) bee7row.append(blade) bee7grid.append(bee7row) # USRP-Bee7 Connections # Blades across the diagonal are connected to USRPs for b in range(4): for u in range(USRPS_PER_BLADE): sim_core.connect_bidir( usrps[USRPS_PER_BLADE*b + u], 0, bee7grid[b][b], len(hw.Bee7Fpga.EXT_IO_LANES)*(u/8) + hw.Bee7Fpga.BP_BASE+(u%8), 'SAMP') sim_core.connect_bidir( hosts[b], 0, bee7grid[b][b], hw.Bee7Fpga.FP_BASE+8, 'CONFIG', ['blue','blue']) # Bee7-Bee7 Connections null_srcs = [] for r in range(4): # Traverse across row for c in range(4): # Traverse across col for f in range(4): samp_in_base = len(hw.Bee7Fpga.EXT_IO_LANES)*f + hw.Bee7Fpga.BP_BASE samp_out_base = len(hw.Bee7Fpga.EXT_IO_LANES)*f + hw.Bee7Fpga.BP_BASE+8 pp_in_base = len(hw.Bee7Fpga.EXT_IO_LANES)*f + hw.Bee7Fpga.FP_BASE pp_out_base = len(hw.Bee7Fpga.EXT_IO_LANES)*f + hw.Bee7Fpga.FP_BASE+8 if r != c: sim_core.connect_multi_bidir( bee7grid[r][(c+3)%4], list(range(samp_out_base,samp_out_base+8)), bee7grid[r][c], list(range(samp_in_base,samp_in_base+8)), 'SAMP_O2I', ['black','blue']) sim_core.connect_multi_bidir( bee7grid[r][c], list(range(pp_out_base,pp_out_base+8)), bee7grid[(r+1)%4][c], list(range(pp_in_base,pp_in_base+8)), 'PP_O2I', ['black','blue']) else: for i in range(8): sim_core.connect(null_src, 0, bee7grid[(r+1)%4][c], pp_in_base + i) class Topology_3D_4x4_FLB: @classmethod def get_radio_num(cls, router_addr, radio_idx, concentration): """ Returns the global radio index given local radio info (global_radio_idx) = get_radio_num(router_addr, radio_idx, concentration) where: - router_addr: Address of the current FPGA (router) in 3-D space - radio_idx: The local index of the radio for the current router_addr - concentration: Number of USRPs connected to each router """ DIM_SIZE = 4 multiplier = concentration radio_num = 0 for dim in ['Z','Y','X']: radio_num += router_addr[dim] * multiplier multiplier *= DIM_SIZE return radio_num + radio_idx @classmethod def get_portmap(cls, node_addr): """ Returns the router and terminal connections for the current FPGA (router_map, terminal_map) = get_portmap(node_addr) where: - node_addr: Address of the current FPGA in 3-D space - router_map: A double map indexed by the dimension {X,Y,Z} and the FPGA address in that dimension that returns the Aurora lane index that connects the current node to the neighbor. Example: if node_addr = [0,0,0] then router_map['X'][1] will hold the IO lane index that connects the current node with its X-axis neighbor with address 1 - terminal_map: A single map that maps a dimension {X,Y,Z} to the starting IO lane index for terminals (like USRPs) in that dimension. A terminal is a leaf node in the network. """ router_map = dict() terminal_map = dict() # If "node_addr" is the address of the current FPGA in the (X,Y,Z) space, # then build a list of other addresses (neighbors) in each dimension DIM_SIZE = 4 for dim in ['X','Y','Z']: all_addrs = list(range(DIM_SIZE)) all_addrs.remove(node_addr[dim]) router_map[dim] = dict() for dst in all_addrs: router_map[dim][dst] = 0 # Assign lane index as 0 for now # Assign Aurora lanes for all external connections between BEE7s io_base = hw.Bee7Fpga.EXT_IO_LANES[0] # ---- X-axis ---- # All BEE7s in the X dimension are connected via the RTM # The fist quad on the RTM is reserved for SFP+ peripherals like # the USRPs, Ethernet switch ports, etc # All others are used for inter BEE connections over QSFP+ terminal_map['X'] = io_base + hw.Bee7Fpga.BP_BASE xdst = terminal_map['X'] + DIM_SIZE for dst in router_map['X']: router_map['X'][dst] = xdst xdst += DIM_SIZE # ---- Z-axis ---- # All BEE7s in the Z dimension are connected via FMC IO cards (front panel) # To be symmetric with the X-axis the first quad on the FMC bus is also # reserved (regardless of all quads being symmetric) terminal_map['Z'] = io_base + hw.Bee7Fpga.FP_BASE zdst = terminal_map['Z'] + DIM_SIZE for dst in router_map['Z']: router_map['Z'][dst] = zdst zdst += DIM_SIZE # ---- Y-axis ---- # Within a BEE7, FPGAs re connected in the Y-dimension: # 0 - 1 # | X | # 2 - 3 Y_LANE_MAP = { 0:{1:hw.Bee7Fpga.EW_IO_LANES[0], 2:hw.Bee7Fpga.NS_IO_LANES[0], 3:hw.Bee7Fpga.XX_IO_LANES[0]}, 1:{0:hw.Bee7Fpga.EW_IO_LANES[0], 2:hw.Bee7Fpga.XX_IO_LANES[0], 3:hw.Bee7Fpga.NS_IO_LANES[0]}, 2:{0:hw.Bee7Fpga.NS_IO_LANES[0], 1:hw.Bee7Fpga.XX_IO_LANES[0], 3:hw.Bee7Fpga.EW_IO_LANES[0]}, 3:{0:hw.Bee7Fpga.XX_IO_LANES[0], 1:hw.Bee7Fpga.NS_IO_LANES[0], 2:hw.Bee7Fpga.EW_IO_LANES[0]}} for dst in router_map['Y']: router_map['Y'][dst] = Y_LANE_MAP[node_addr['Y']][dst] return (router_map, terminal_map) @classmethod def config_bitstream(cls, bee7fpga, app_settings, fpga_addr): """ Defines the FPGA behavior for the current FPGA. This function will make create the necessary simulation functions, connect them to IO lanes and define the various utilization metrics for the image. config_bitstream(bee7fpga, app_settings, fpga_addr): - bee7fpga: The FPGA simulation object being configured - fpga_addr: Address of the FPGA in 3-D space - app_settings: Application information """ if len(fpga_addr) != 3: raise bee7fpga.SimCompError('fpga_addr must be 3-dimensional. Got ' + str(len(fpga_addr))) # Map that stores lane indices for all neighbors of this node (router_map, terminal_map) = cls.get_portmap(fpga_addr) # USRPs are connected in the X dimension (RTM) because it has SFP+ ports base_usrp_lane = terminal_map['X'] DIM_WIDTH = 4 # Dimension size for the 3-D network MAX_USRPS = 4 # Max USRPs that can possibly be connected to each FPGA NUM_USRPS = 2 # Number of USRPs actually connected to each FPGA CHANS_PER_USRP = 2 # How many radio channels does each USRP have ALL_CHANS = list(range(pow(DIM_WIDTH, 3) * NUM_USRPS * CHANS_PER_USRP)) # Each FPGA will forward the sample stream from each USRP to all of its # X-axis neighbors for ri in router_map['X']: for li in range(MAX_USRPS): # li = GT Lane index bee7fpga.sim_core.connect(bee7fpga.serdes_i[base_usrp_lane + li], 0, bee7fpga.serdes_o[router_map['X'][ri] + li], 0) # Consequently, this FPGA will receive the USRP sample streams from each of # its X-axis neighbors. Define an internal bus to aggregate all the neighbor # streams with the native ones. Order the streams such that each FPGA sees the # same data streams. bee7fpga.int_samp_bus = dict() for i in range(DIM_WIDTH): for li in range(MAX_USRPS): # li = GT Lane index bee7fpga.int_samp_bus[(MAX_USRPS*i) + li] = rfnocsim.Channel( bee7fpga.sim_core, '%s/_INT_SAMP_%02d' % (bee7fpga.name,(MAX_USRPS*i) + li)) ln_base = base_usrp_lane if i == fpga_addr['X'] else router_map['X'][i] bee7fpga.sim_core.connect(bee7fpga.serdes_i[ln_base + li], 0, bee7fpga.int_samp_bus[(MAX_USRPS*i) + li], 0) # Forward the X-axis aggregated sample streams to all Y-axis neighbors for ri in router_map['Y']: for li in range(DIM_WIDTH*DIM_WIDTH): # li = GT Lane index bee7fpga.sim_core.connect(bee7fpga.int_samp_bus[li], 0, bee7fpga.serdes_o[router_map['Y'][ri] + li], 0) # What partial products will this FPGA compute? # Generate channel list to compute partial products pp_chans = list() for cg in range(DIM_WIDTH): # cg = Channel group for r in range(NUM_USRPS): radio_num = cls.get_radio_num({'X':fpga_addr['X'], 'Y':fpga_addr['Y'], 'Z':cg}, r, NUM_USRPS) for ch in range(CHANS_PER_USRP): pp_chans.append(radio_num*CHANS_PER_USRP + ch) # Instantiate partial product computer bee7fpga.func_pp_comp = PartialContribComputer( sim_core=bee7fpga.sim_core, name=bee7fpga.name+'/pp_computer/', size=DIM_WIDTH*DIM_WIDTH*NUM_USRPS, dst_chans=pp_chans, items_per_stream=CHANS_PER_USRP, app_settings=app_settings) bee7fpga.add_function(bee7fpga.func_pp_comp) # Partial product computer takes inputs from all Y-axis links for sg in range(DIM_WIDTH): # sg = Group of sexdectects for qi in range(DIM_WIDTH): # qi = GT Quad index for li in range(NUM_USRPS): func_inln = (sg * DIM_WIDTH * NUM_USRPS) + (qi * NUM_USRPS) + li if sg == fpga_addr['Y']: bee7fpga.sim_core.connect(bee7fpga.int_samp_bus[(qi * DIM_WIDTH) + li], 0, bee7fpga.func_pp_comp, func_inln) else: bee7fpga.sim_core.connect(bee7fpga.serdes_i[router_map['Y'][sg] + (qi * DIM_WIDTH) + li], 0, bee7fpga.func_pp_comp, func_inln) # Internal bus to hold aggregated partial products bee7fpga.pp_bus = dict() for i in range(DIM_WIDTH*NUM_USRPS): bee7fpga.pp_bus[i] = rfnocsim.Channel(bee7fpga.sim_core, '%s/_INT_PP_%02d' % (bee7fpga.name,i)) bee7fpga.sim_core.connect(bee7fpga.func_pp_comp, i, bee7fpga.pp_bus[i], 0) # Forward partial products to Z-axis neighbors for ri in router_map['Z']: for li in range(NUM_USRPS): # li = GT Lane index bee7fpga.sim_core.connect(bee7fpga.pp_bus[ri*NUM_USRPS + li], 0, bee7fpga.serdes_o[router_map['Z'][ri] + li], 0) # Instantiate partial product adder bee7fpga.func_pp_comb = dict() for i in range(NUM_USRPS): bee7fpga.func_pp_comb[i] = PartialContribCombiner( sim_core=bee7fpga.sim_core, name=bee7fpga.name + '/pp_combiner_%d/'%(i), radix=DIM_WIDTH, app_settings=app_settings, reducer_filter=(ALL_CHANS, 'tx'), items_per_stream=CHANS_PER_USRP) bee7fpga.add_function(bee7fpga.func_pp_comb[i]) # Aggregate partial products from Z-axis neighbors for u in range(NUM_USRPS): for ri in range(DIM_WIDTH): if ri in router_map['Z']: bee7fpga.sim_core.connect(bee7fpga.serdes_i[router_map['Z'][ri] + u], 0, bee7fpga.func_pp_comb[u], ri) else: bee7fpga.sim_core.connect(bee7fpga.pp_bus[ri*NUM_USRPS + u], 0, bee7fpga.func_pp_comb[u], ri) # Instantiate partial product adder for u in range(NUM_USRPS): bee7fpga.sim_core.connect(bee7fpga.func_pp_comb[u], 0, bee7fpga.serdes_o[base_usrp_lane + u], 0) # Coefficient consumer bee7fpga.coeff_sink = rfnocsim.Consumer(bee7fpga.sim_core, bee7fpga.name + '/coeff_sink', 10e9/8, 0.0) bee7fpga.sim_core.connect(bee7fpga.serdes_i[terminal_map['X'] + NUM_USRPS], 0, bee7fpga.coeff_sink, 0) @classmethod def connect(cls, sim_core, usrps, bee7blades, hosts, app_settings): NUM_USRPS = 2 # Reshape BEE7s # The blades are arranged in 3D Flattened Butterfly configuration # with a dimension width of 4. The X and Z dimension represent row, col # and the Y dimension represents the internal connections bee7grid = [] for r in range(4): bee7row = [] for c in range(4): blade = bee7blades[4*r + c] for f in range(blade.NUM_FPGAS): cls.config_bitstream(blade.fpgas[f], app_settings, {'X':r, 'Y':f, 'Z':c}) bee7row.append(blade) bee7grid.append(bee7row) # USRP-Bee7 Connections # Blades across the diagonal are connected to USRPs for x in range(4): for y in range(4): for z in range(4): for u in range(NUM_USRPS): usrp_num = cls.get_radio_num({'X':x,'Y':y,'Z':z}, u, NUM_USRPS) (router_map, terminal_map) = cls.get_portmap({'X':x,'Y':y,'Z':z}) sim_core.connect_bidir( usrps[usrp_num], 0, bee7grid[x][z], hw.Bee7Blade.io_lane(y, terminal_map['X'] + u), 'SAMP') # Bee7-Bee7 Connections null_srcs = [] for row in range(4): for col in range(4): for fpga in range(4): (src_map, t) = cls.get_portmap({'X':row,'Y':fpga,'Z':col}) for dst in range(4): if row != dst: (dst_map, t) = cls.get_portmap({'X':dst,'Y':fpga,'Z':col}) sim_core.connect_multi( bee7grid[row][col], list(range(hw.Bee7Blade.io_lane(fpga, src_map['X'][dst]), hw.Bee7Blade.io_lane(fpga, src_map['X'][dst]+4))), bee7grid[dst][col], list(range(hw.Bee7Blade.io_lane(fpga, dst_map['X'][row]), hw.Bee7Blade.io_lane(fpga, dst_map['X'][row]+4))), 'SAMP') if col != dst: (dst_map, t) = cls.get_portmap({'X':row,'Y':fpga,'Z':dst}) sim_core.connect_multi( bee7grid[row][col], list(range(hw.Bee7Blade.io_lane(fpga, src_map['Z'][dst]), hw.Bee7Blade.io_lane(fpga, src_map['Z'][dst]+4))), bee7grid[row][dst], list(range(hw.Bee7Blade.io_lane(fpga, dst_map['Z'][col]), hw.Bee7Blade.io_lane(fpga, dst_map['Z'][col]+4))), 'PP', 'blue') # Host connection for row in range(4): for col in range(4): for fpga in range(4): (router_map, terminal_map) = cls.get_portmap({'X':row,'Y':row,'Z':col}) sim_core.connect_bidir( hosts[row], col*4 + fpga, bee7grid[row][col], hw.Bee7Blade.io_lane(fpga, terminal_map['X'] + NUM_USRPS), 'COEFF', 'red')