// // Copyright 2019 Ettus Research, A National Instruments Company // // SPDX-License-Identifier: LGPL-3.0-or-later // // Module: ctrlport_decoder // // Description: // // This block splits a single control port interface into multiple. It is used // when you have a single master that needs to access multiple slaves. For // example, a NoC block where the registers are implemented in multiple // submodules that must be read/written by a single NoC shell. // // This version also implements address decoding. The request is passed to a // slave only if the address falls within that slave's address space. Each // slave is given an address space of 2**ADDR_W and the first slave starts at // address BASE_ADDR. In other words, the request address is partitioned as // shown below. // // |---------------- 32-bit -----------------| // | Base | Port Num | Slave Addr | // |-----------------------------------------| // // When passed to the slave, the base address and port number bits are stripped // from the request address and only the SLAVE_ADDR_W-bit address is passed // through. // // Parameters: // // NUM_SLAVES : Number of slave devices that you want to connect to master. // BASE_ADDR : Base address for slave 0. This should be a power-of-2 // multiple of the combined slave address spaces. // SLAVE_ADDR_W : Number of address bits to allocate to each slave. // module ctrlport_decoder #( parameter NUM_SLAVES = 2, parameter BASE_ADDR = 0, parameter SLAVE_ADDR_W = 8 ) ( input wire ctrlport_clk, input wire ctrlport_rst, // Slave Interface input wire s_ctrlport_req_wr, input wire s_ctrlport_req_rd, input wire [19:0] s_ctrlport_req_addr, input wire [31:0] s_ctrlport_req_data, input wire [ 3:0] s_ctrlport_req_byte_en, input wire s_ctrlport_req_has_time, input wire [63:0] s_ctrlport_req_time, output reg s_ctrlport_resp_ack = 1'b0, output reg [ 1:0] s_ctrlport_resp_status, output reg [31:0] s_ctrlport_resp_data, // Master Interfaces output reg [ NUM_SLAVES-1:0] m_ctrlport_req_wr = 0, output reg [ NUM_SLAVES-1:0] m_ctrlport_req_rd = 0, output reg [20*NUM_SLAVES-1:0] m_ctrlport_req_addr = 0, output reg [32*NUM_SLAVES-1:0] m_ctrlport_req_data, output reg [ 4*NUM_SLAVES-1:0] m_ctrlport_req_byte_en, output reg [ NUM_SLAVES-1:0] m_ctrlport_req_has_time, output reg [64*NUM_SLAVES-1:0] m_ctrlport_req_time, input wire [ NUM_SLAVES-1:0] m_ctrlport_resp_ack, input wire [ 2*NUM_SLAVES-1:0] m_ctrlport_resp_status, input wire [32*NUM_SLAVES-1:0] m_ctrlport_resp_data ); localparam PORT_NUM_W = $clog2(NUM_SLAVES); localparam PORT_NUM_POS = SLAVE_ADDR_W; localparam BASE_ADDR_W = 20 - (SLAVE_ADDR_W + PORT_NUM_W); localparam BASE_ADDR_POS = SLAVE_ADDR_W + PORT_NUM_W; localparam [19:0] BASE_ADDR_MASK = { BASE_ADDR_W {1'b1}} << BASE_ADDR_POS; //--------------------------------------------------------------------------- // Split the requests among the slaves //--------------------------------------------------------------------------- wire [NUM_SLAVES-1:0] decoder; generate genvar i; for (i = 0; i < NUM_SLAVES; i = i+1) begin : gen_split // Check if the upper bits of the request address match each slave. If the // address matches, set the corresponding decoder[] bit. if (PORT_NUM_W == 0) begin // Only one port in this case, so there are no port number bits to check assign decoder[i] = ((s_ctrlport_req_addr & BASE_ADDR_MASK) == BASE_ADDR); end else begin assign decoder[i] = ((s_ctrlport_req_addr & BASE_ADDR_MASK) == BASE_ADDR) && (s_ctrlport_req_addr[PORT_NUM_POS +: PORT_NUM_W] == i); end always @(posedge ctrlport_clk) begin if (ctrlport_rst) begin m_ctrlport_req_wr[i] <= 1'b0; m_ctrlport_req_rd[i] <= 1'b0; end else begin // Mask WR and RD based on address decoding m_ctrlport_req_wr[i] <= s_ctrlport_req_wr & decoder[i]; m_ctrlport_req_rd[i] <= s_ctrlport_req_rd & decoder[i]; // Other values pass through to all slaves, but should be ignored // unless the corresponding WR or RD is not asserted. m_ctrlport_req_data [32*i +: 32] <= s_ctrlport_req_data; m_ctrlport_req_byte_en [4*i +: 4] <= s_ctrlport_req_byte_en; m_ctrlport_req_has_time[i] <= s_ctrlport_req_has_time; m_ctrlport_req_time [64*i +: 64] <= s_ctrlport_req_time; // Pass through only the relevant slave bits m_ctrlport_req_addr[20*i+:20] <= 20'b0; m_ctrlport_req_addr[20*i+:SLAVE_ADDR_W] <= s_ctrlport_req_addr[SLAVE_ADDR_W-1:0]; end end end endgenerate //--------------------------------------------------------------------------- // Decode the responses //--------------------------------------------------------------------------- reg [31:0] data; reg [ 1:0] status; reg ack = 0; // Take the responses and mask them with ack, then OR them together always @(*) begin : comb_decode integer s; data = 0; status = 0; ack = 0; for (s = 0; s < NUM_SLAVES; s = s+1) begin data = data | (m_ctrlport_resp_data [s*32 +: 32] & {32{m_ctrlport_resp_ack[s]}}); status = status | (m_ctrlport_resp_status[s* 2 +: 2] & { 2{m_ctrlport_resp_ack[s]}}); ack = ack | m_ctrlport_resp_ack[s]; end end // Register the output to break combinatorial path always @(posedge ctrlport_clk) begin if (ctrlport_rst) begin s_ctrlport_resp_ack <= 0; end else begin s_ctrlport_resp_data <= data; s_ctrlport_resp_status <= status; s_ctrlport_resp_ack <= ack; end end endmodule