RFNoC Crossbar Architectures

Networking 101

Main Components of a Network

1. Network Topology

The arrangement of network components (terminals, routers, links, etc)

2. Routing Algorithm

The path selection for packets traversing the network

3. Flow Control

• The process of managing the rate of transmission between components

4. Microarchitecture

The organization and implementation of router components

Definitions

- The throughput of a network is the data rate (bps) that the network accepts per input port
- The *injection bandwidth* is the max throughput for a given channel
- The channel load is the ratio between the bandwidth on a channel to the injection bandwidth
- The *latency* is the amount of time it takes to traverse the network

Load vs Latency Graph

Used to evaluate network performance under various load conditions. Traces represent percentile latency for various implementations. Conveys:

- Statistical spread of latency
- Maximum load tolerated by network

Examples:

- Blue: High latency network with high load capacity
- 2. Orange: Low latency network with low capacity

Traffic Patterns

Network performance depends on the traffic pattern i.e. the pattern of the source to destination paths.

Examples:

- Uniform: A node sends to all nodes with equal probability
- Uniform Others: A node sends to all other nodes with equal probability
- Neighbor: A node only sends traffic to their neighbor
- Bit Complement: A node only sends traffic to the diametrically opposite node
- Sequential: A node sends to all nodes sequentially
- Loopback: A nodes sends to itself

Uniform Random (with self)

0.25	0.25	0.25	0.25
0.25	0.25	0.25	0.25
0.25	0.25	0.25	0.25
0.25	0.25	0.25	0.25

Bit Complement dest=(~src)%N

0.00	0.00	0.00	1.00
0.00	0.00	1.00	0.00
0.00	1.00	0.00	0.00
1.00	0.00	0.00	0.00

Uniform Random (without self)

0.00	0.33	0.33	0.33
0.33	0.00	0.33	0.33
0.33	0.33	0.00	0.33
0.33	0.33	0.33	0.00

Random Permutation

1.00	0.00	0.00	0.00
0.00	0.00	0.00	1.00
0.00	1.00	0.00	0.00
0.00	0.00	1.00	0.00

Neighbor

dest=(src+1)%N

0.00	1.00	0.00	0.00
0.00	0.00	1.00	0.00
0.00	0.00	0.00	1.00
1.00	0.00	0.00	0.00

Other

0.20	0.40	0.30	0.10
1.00	0.00	0.00	0.00
0.05	0.70	0.15	0.10
0.00	0.50	0.50	0.00

RFNoC Crossbar Implementations

- Topology: Bidirectional Mesh or Unidirectional Torus
- Routing: Wormhole or Store-and-Fwd
 - Wormhole: A packet can be in several routers at a time.
 - Store-and-Fwd: A packet is completely buffered in one router before moving to the next one.
- Flow Control: Packet buffer with cut-through
 - o Packet buffer: Entire packet is buffered in router
 - o Cut-through: Only flits (words) are backpressured

2x2 Mesh

Microarchitecture

This crossbar has been optimized for low-throughput control and can scale to a large number of ports. The underlying implementation uses a 2-dimensional mesh topology which can be configured either as a bidirectional mesh or a unidirectional torus. The crossbar is not deadlock free by design but there are various features implemented that reduce the possibility of deadlock. In the event of a deadlock the crossbar will self-recover by dropping all the packets in flight. This behaviour makes the crossbar lossy. The underlying mesh topology can only be a square so the number of ports supported are N^2 for N>1. All unused ports need to be terminated using the axis_port_terminator module.

2x2 Mesh

Router Architecture

Each node in the crossbar is comprised of a terminal and a router. A terminal is the interface to client logic and the network of routers performs packet switching. It consists of:

- A switch to do the routing
- Ingress buffers with one or more virtual channels
- A switch allocator to choose an input port to drive the switch
- A destination selector to choose the destination port
- Egress buffers

Scaling

The mesh can scale to an arbitrary number of ports.

chdr_crossbar_nxn

- Topology: Trivial. Single router.
- Routing: Store-and-Fwd
 - Store-and-Fwd: A packet is completely buffered in one router before moving to the next one.
- Flow Control: Packet buffer with cut-through
 - o Packet buffer: Entire packet is buffered in router
 - Cut-through: Only flits (words) are backpressured

Alternative for axi crossbar

Performance Metrics: Control Crossbar

Load vs Latency: axis_ctrl_crossbar_2d_mesh (TORUS, 25 nodes, 25 traffic generators)

Load vs Latency: axis_ctrl_crossbar_2d_mesh (TORUS, 25 nodes, 25 traffic generators)

Load vs Latency: axis_ctrl_crossbar_2d_mesh (TORUS, 25 nodes, 25 traffic generators)

Load vs Latency: axis_ctrl_crossbar_2d_mesh (TORUS, 25 nodes, 4 traffic generators)

Load vs Latency: axis_ctrl_crossbar_2d_mesh (TORUS, 25 nodes, 4 traffic generators)

Load vs Latency: axis_ctrl_crossbar_2d_mesh (TORUS, 25 nodes, 4 traffic generators)

FPGA Utilization: axis_ctrl_crossbar_2d_mesh

^{*} Utilization percentages are relative to the X310 FPGA (Kintex7 410T Speed Grade 3)

Timing: axis_ctrl_crossbar_2d_mesh

^{*} Design was synthesized for the X310 FPGA (Kintex7 410T Speed Grade 3)

^{**} Fmax is post-synthesis and pre-optimization

Performance Metrics: CHDR Crossbar

Load vs Latency: **chdr_crossbar_nxn** (12 nodes, 12 traffic generators)

Load vs Latency: **chdr_crossbar_nxn** (12 nodes, 12 traffic generators)

Load vs Latency: **chdr_crossbar_nxn** (12 nodes, 12 traffic generators)

FPGA Utilization: chdr_crossbar_nxn

^{*} Utilization percentages are relative to the X310 FPGA (Kintex7 410T Speed Grade 3)

Timing: chdr_crossbar_nxn

^{*} Design was synthesized for the X310 FPGA (Kintex7 410T Speed Grade 3)

^{**} Fmax is post-synthesis and pre-optimization

Performance Comparison: Old vs New CHDR Crossbar

