// // Copyright 2011-2013 Ettus Research LLC // ////////////////////////////////////////////////////////////////////////////////// //this is a FIFO master interface for the FX3 in "slave fifo" mode. module gpif2_slave_fifo32 #( //sizes for fifo64 2 clock cascade fifos parameter DATA_RX_FIFO_SIZE = 12, //max vita pkt size parameter DATA_TX_FIFO_SIZE = 12, //max vita pkt size parameter CTRL_RX_FIFO_SIZE = 5, //small resp packets parameter CTRL_TX_FIFO_SIZE = 5, //small ctrl packets //address constants for the endpoints parameter ADDR_DATA_TX = 2'b00, parameter ADDR_DATA_RX = 2'b01, parameter ADDR_CTRL_TX = 2'b10, parameter ADDR_CTRL_RX = 2'b11, parameter END_WITH_COMMA = 0 ) (// GPIF signals input gpif_clk, input gpif_rst, input gpif_enb, inout [31:0] gpif_d, input [3:0] gpif_ctl, output reg sloe, output reg slrd, output reg slwr, output slcs, output reg pktend, output reg [1:0] fifoadr, // FIFO interfaces input fifo_clk, input fifo_rst, output [63:0] tx_tdata, output tx_tlast, output tx_tvalid, input tx_tready, input [63:0] rx_tdata, input rx_tlast, input rx_tvalid, output rx_tready, output [63:0] ctrl_tdata, output ctrl_tlast, output ctrl_tvalid, input ctrl_tready, input [63:0] resp_tdata, input resp_tlast, input resp_tvalid, output resp_tready, output [31:0] debug ); reg fifo_nearly_full; wire ctrl_tx_fifo_nearly_full, data_tx_fifo_nearly_full; wire ctrl_tx_fifo_has_space, data_tx_fifo_has_space; wire [159:0] debug_tx_data, debug_tx_ctrl; assign slcs = 1'b0; //DMA FIFO ready and watermark flags reg EP_READY, EP_READY1, EP_WMARK, EP_WMARK1; always @(posedge gpif_clk) EP_READY <= gpif_ctl[0]; always @(posedge gpif_clk) EP_WMARK <= gpif_ctl[1]; always @(posedge gpif_clk) EP_READY1 <= EP_READY; always @(posedge gpif_clk) EP_WMARK1 <= EP_WMARK; // GPIF output data lines, tristate reg [31:0] gpif_data_in, gpif_data_out; always @(posedge gpif_clk) gpif_data_in <= gpif_d; assign gpif_d = sloe ? gpif_data_out[31:0] : 32'bz; // //////////////////////////////////////////////////////////////////// // GPIF bus master state machine wire wr_fifo_xfer, wr_fifo_eof; wire [31:0] wr_fifo_data; reg read_ready_go, write_ready_go; reg wr_one, rd_one; reg [3:0] state; //state machine current state localparam STATE_IDLE = 0; localparam STATE_THINK = 1; localparam STATE_READ = 2; localparam STATE_WRITE = 3; localparam STATE_WAIT = 4; reg [2:0] idle_cycles; reg [1:0] last_addr, next_addr; wire local_fifo_ready; reg slrd1, slrd2, slrd3; always @(posedge gpif_clk) if (gpif_rst) begin slrd1 <= 1; slrd2 <= 1; slrd3 <= 1; end else begin slrd1 <= slrd; slrd2 <= slrd1; slrd3 <= slrd2; end wire RD_VALID = ~slrd3; wire RD_LAST = slrd2; wire WR_VALID = (EP_WMARK1 || !wr_one); // ////////////////////////////////////////////////////////////// // FX2 slave FIFO bus master state machine // always @(posedge gpif_clk) if(gpif_rst) begin state <= STATE_IDLE; sloe <= 0; slrd <= 1; slwr <= 1; pktend <= 1; gpif_data_out <= 32'b0; idle_cycles <= 0; fifoadr <= 0; wr_one <= 1'b0; rd_one <= 1'b0; last_addr <= 2'b0; end else if (gpif_enb) begin case (state) // // Increment fifoadr to point at next thread, set all strobes to idle, // STATE_IDLE: begin sloe <= 0; slrd <= 1; slwr <= 1; pktend <= 1; gpif_data_out <= 32'b0; fifoadr <= next_addr; state <= STATE_WAIT; idle_cycles <= 0; end // // now wait here for 8 clock cycles before transitioning to STATE_THINK. // We stay in this state if no local FIFO's can proceed at this point. // STATE_WAIT: begin if (local_fifo_ready) begin idle_cycles <= idle_cycles + 1'b1; if (idle_cycles == 3'b111) state <= STATE_THINK; end else begin idle_cycles <= 3'b0; fifoadr <= fifoadr + 2'b1; end end // // If there is a read to start, assert SLRD and SLOE and transition to STATE_READ. // If there is a write to perform, set flags that says there is the possibility to do at least // one write (wr_one) and transition to STATE_WRITE // STATE_THINK: begin if (EP_READY1 && read_ready_go) begin state <= STATE_READ; slrd <= 0; rd_one <= 0; end else if (EP_READY1 && write_ready_go) begin state <= STATE_WRITE; sloe <= 1; wr_one <= 1'b0; end else begin state <= STATE_IDLE; end idle_cycles <= 0; last_addr <= fifoadr; end // If flag rd_one is set (armed 5 cycles after slrd goes initialy assrted) and RD_VALID has gone deasserted // (meaning that the watermark deasserted 5 clock cycles ago) transition to STATE_IDLE. // If watermark deasserted 2 cycles ago de-assert slrd ...read data is still traveling in the pipeline. // Whilst RD_VALID stays asserted keep the rd_one flag armed. STATE_READ: begin if (rd_one && ~RD_VALID) state <= STATE_IDLE; if (~EP_WMARK1 | fifo_nearly_full) slrd <= 1; if (RD_VALID) rd_one <= 1'b1; end // If local FIFO goes empty or tlast is set then transition to STATE_IDLE // Push local FIFO data out onto GPIF data bus. // if local FIFO has valid data then assert slwr // if local FIFO assertes tlast then assert pktend // If WR_VALID asserted (because wr_one already asserted in the first cycle in this state) // now clear wr_one (watermark will keep WR_VALID asserted from now on if this is a burst). // STATE_WRITE: begin if (~wr_fifo_xfer || wr_fifo_eof) state <= STATE_IDLE; gpif_data_out <= wr_fifo_data; slwr <= ~wr_fifo_xfer; pktend <= ~wr_fifo_eof; if (WR_VALID) wr_one <= 1'b1; end default: state <= STATE_IDLE; endcase end // /////////////////////////////////////////////////////////////////// // fifo signal assignments and enables //output from fifos - ready to xfer wire data_tx_tready, ctrl_tx_tready; wire ctrl_rx_tvalid, data_rx_tvalid; //Priority encoding for the the next address to service: //The next address to service is based on the readiness //of the internal fifos and last serviced fairness metric. always @(posedge gpif_clk) next_addr <= ((ctrl_rx_tvalid && last_addr != ADDR_CTRL_RX)? ADDR_CTRL_RX : ((ctrl_tx_fifo_has_space && last_addr != ADDR_CTRL_TX)? ADDR_CTRL_TX : ((data_rx_tvalid && last_addr != ADDR_DATA_RX)? ADDR_DATA_RX : ((data_tx_fifo_has_space && last_addr != ADDR_DATA_TX)? ADDR_DATA_TX : (fifoadr + 2'b1) )))); //Help the FPGA search to only look for addrs that the FPGA is ready for assign local_fifo_ready = (ctrl_rx_tvalid && (fifoadr == ADDR_CTRL_RX)) || (ctrl_tx_fifo_has_space && (fifoadr == ADDR_CTRL_TX)) || (data_rx_tvalid && (fifoadr == ADDR_DATA_RX)) || (data_tx_fifo_has_space && (fifoadr == ADDR_DATA_TX)); always @(posedge gpif_clk) fifo_nearly_full <= (ctrl_tx_fifo_nearly_full && (fifoadr == ADDR_CTRL_TX)) || (data_tx_fifo_nearly_full && (fifoadr == ADDR_DATA_TX)); always @(posedge gpif_clk) read_ready_go <= (ctrl_tx_fifo_has_space && (fifoadr == ADDR_CTRL_TX)) || (data_tx_fifo_has_space && (fifoadr == ADDR_DATA_TX)); always @(posedge gpif_clk) write_ready_go <= (ctrl_rx_tvalid && (fifoadr == ADDR_CTRL_RX)) || (data_rx_tvalid && (fifoadr == ADDR_DATA_RX)); //fifo xfer enable wire data_rx_tready = (state == STATE_WRITE) && (fifoadr == ADDR_DATA_RX) && WR_VALID; wire ctrl_rx_tready = (state == STATE_WRITE) && (fifoadr == ADDR_CTRL_RX) && WR_VALID; wire data_tx_tvalid = (state == STATE_READ) && (fifoadr == ADDR_DATA_TX) && RD_VALID; wire ctrl_tx_tvalid = (state == STATE_READ) && (fifoadr == ADDR_CTRL_TX) && RD_VALID; //outputs from rx fifo paths wire ctrl_rx_tlast, data_rx_tlast; wire [31:0] ctrl_rx_tdata, data_rx_tdata; //mux rx outputs for gpif state machine assign wr_fifo_xfer = (fifoadr == ADDR_CTRL_RX)? (ctrl_rx_tvalid && ctrl_rx_tready) : (data_rx_tvalid && data_rx_tready); assign wr_fifo_eof = wr_fifo_xfer && ((fifoadr == ADDR_CTRL_RX)? ctrl_rx_tlast : data_rx_tlast); assign wr_fifo_data = (fifoadr == ADDR_CTRL_RX)? ctrl_rx_tdata : data_rx_tdata; wire ctrl_bus_error, tx_bus_error; // //////////////////////////////////////////////////////////////////// // TX Data Path gpif2_to_fifo64 #(.FIFO_SIZE(DATA_TX_FIFO_SIZE)) gpif2_to_fifo64_tx( .gpif_clk(gpif_clk), .gpif_rst(gpif_rst), .i_tdata(gpif_data_in), .i_tlast(RD_LAST), .i_tvalid(data_tx_tvalid), .i_tready(data_tx_tready), .fifo_clk(fifo_clk), .fifo_rst(fifo_rst), .fifo_nearly_full(data_tx_fifo_nearly_full), .fifo_has_space(data_tx_fifo_has_space), .o_tdata(tx_tdata), .o_tlast(tx_tlast), .o_tvalid(tx_tvalid), .o_tready(tx_tready), .bus_error(tx_bus_error), .debug(debug_tx_data) ); // //////////////////////////////////////////// // RX Data Path fifo64_to_gpif2 #(.FIFO_SIZE(DATA_RX_FIFO_SIZE)) fifo64_to_gpif2_rx( .fifo_clk(fifo_clk), .fifo_rst(fifo_rst), .i_tdata(rx_tdata), .i_tlast(rx_tlast), .i_tvalid(rx_tvalid), .i_tready(rx_tready), .gpif_clk(gpif_clk), .gpif_rst(gpif_rst), .o_tdata(data_rx_tdata), .o_tlast(data_rx_tlast), .o_tvalid(data_rx_tvalid), .o_tready(data_rx_tready) ); // //////////////////////////////////////////////////////////////////// // CTRL path gpif2_to_fifo64 #(.FIFO_SIZE(CTRL_TX_FIFO_SIZE)) gpif2_to_fifo64_ctrl( .gpif_clk(gpif_clk), .gpif_rst(gpif_rst), .i_tdata(gpif_data_in), .i_tlast(RD_LAST), .i_tvalid(ctrl_tx_tvalid), .i_tready(ctrl_tx_tready), .fifo_clk(fifo_clk), .fifo_rst(fifo_rst), .fifo_nearly_full(ctrl_tx_fifo_nearly_full), .fifo_has_space(ctrl_tx_fifo_has_space), .o_tdata(ctrl_tdata), .o_tlast(ctrl_tlast), .o_tvalid(ctrl_tvalid), .o_tready(ctrl_tready), .bus_error(ctrl_bus_error), .debug(debug_tx_ctrl) ); // //////////////////////////////////////////////////////////////////// // RESP path fifo64_to_gpif2 #(.FIFO_SIZE(CTRL_RX_FIFO_SIZE)) fifo64_to_gpif2_resp( .fifo_clk(fifo_clk), .fifo_rst(fifo_rst), .i_tdata(resp_tdata), .i_tlast(resp_tlast), .i_tvalid(resp_tvalid), .i_tready(resp_tready), .gpif_clk(gpif_clk), .gpif_rst(gpif_rst), .o_tdata(ctrl_rx_tdata), .o_tlast(ctrl_rx_tlast), .o_tvalid(ctrl_rx_tvalid), .o_tready(ctrl_rx_tready) ); // //////////////////////////////////////////// // DEBUG wire [31:0] debug0 = { sloe, slrd, slwr, pktend, fifoadr, EP_READY, EP_WMARK, //8 state, //4 data_tx_tvalid, data_tx_tready, data_rx_tvalid, data_rx_tready, //4 gpif_d[15:0] //16 }; reg [31:0] debug_reg0; reg [31:0] debug_reg1; reg [31:0] debug_reg2; always @(posedge gpif_clk) debug_reg0 <= debug0; always @(posedge gpif_clk) debug_reg1 <= debug_reg0; always @(posedge gpif_clk) debug_reg2 <= debug_reg1; assign debug = debug_reg2; wire [37:0] debug_resp = { resp_tlast, // 37 resp_tready, // 36 resp_tvalid, // 35 ctrl_rx_tlast, // 34 ctrl_rx_tready, // 33 ctrl_rx_tvalid, // 32 ctrl_rx_tdata // 31:0 }; reg [255:0] debug1,debug2; always @(posedge gpif_clk) debug1 <= {debug_resp,debug_tx_ctrl,debug0}; always @(posedge gpif_clk) debug2 <= debug1; wire [35:0] CONTROL0,CONTROL1; /* chipscope_ila_32 chipscope_ila_32( .CONTROL(CONTROL0), // INOUT BUS [35:0] .CLK(gpif_clk), // IN .TRIG0(debug2) // IN BUS [31:0] ); chipscope_ila_128 chipscope_ila_128( .CONTROL(CONTROL1), // INOUT BUS [35:0] .CLK(fifo_clk), // IN .TRIG0({debug4,debug6}) // IN BUS [31:0] ); chipscope_ila_256 chipscope_ila_256( .CONTROL(CONTROL0), // INOUT BUS [35:0] .CLK(gpif_clk), // IN .TRIG0(debug2) // IN BUS [31:0] ); chipscope_ila_32 chipscope_ila_32_2( .CONTROL(CONTROL1), // INOUT BUS [35:0] .CLK(gpif_clk), // IN .TRIG0(32'd0) // IN BUS [31:0] ); chipscope_icon chipscope_icon( .CONTROL0(CONTROL0), // INOUT BUS [35:0] .CONTROL1(CONTROL1) // INOUT BUS [35:0] ); */ endmodule // gpif2_slave_fifo32