// // Copyright 2011 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: LGPL-3.0-or-later // // NOTE: This module uses Xilinx IP that is not available in Spartan3 and older FPGA's // Short halfband decimator (intended to be followed by another stage) // Implements impulse responses of the form [A 0 B 0.5 B 0 A] // // These taps designed by halfgen4 from ldoolittle: // 2 * 131072 * halfgen4(.75/8,2) module small_hb_dec #(parameter WIDTH=18, parameter DEVICE = "SPARTAN6") (input clk, input rst, input bypass, input run, input stb_in, input [WIDTH-1:0] data_in, output reg stb_out, output reg [WIDTH-1:0] data_out); // Round off inputs to 17 bits because of 18 bit multipliers localparam INTWIDTH = 17; wire [INTWIDTH-1:0] data_rnd; wire stb_rnd; round_sd #(.WIDTH_IN(WIDTH),.WIDTH_OUT(INTWIDTH)) round_in (.clk(clk),.reset(rst),.in(data_in),.strobe_in(stb_in),.out(data_rnd),.strobe_out(stb_rnd)); reg stb_rnd_d1; reg [INTWIDTH-1:0] data_rnd_d1; always @(posedge clk) stb_rnd_d1 <= stb_rnd; always @(posedge clk) data_rnd_d1 <= data_rnd; wire go; reg phase, go_d1, go_d2, go_d3, go_d4; always @(posedge clk) if(rst | ~run) phase <= 0; else if(stb_rnd_d1) phase <= ~phase; assign go = stb_rnd_d1 & phase; always @(posedge clk) if(rst | ~run) begin go_d1 <= 0; go_d2 <= 0; go_d3 <= 0; go_d4 <= 0; end else begin go_d1 <= go; go_d2 <= go_d1; go_d3 <= go_d2; go_d4 <= go_d3; end wire [17:0] coeff_a = -10690; wire [17:0] coeff_b = 75809; reg [INTWIDTH-1:0] d1, d2, d3, d4 , d5, d6; always @(posedge clk) if(stb_rnd_d1 | rst) begin d1 <= data_rnd_d1; d2 <= d1; d3 <= d2; d4 <= d3; d5 <= d4; d6 <= d5; end reg [17:0] sum_a, sum_b, middle, middle_d1; always @(posedge clk) if(go) begin sum_a <= {data_rnd_d1[INTWIDTH-1],data_rnd_d1} + {d6[INTWIDTH-1],d6}; sum_b <= {d2[INTWIDTH-1],d2} + {d4[INTWIDTH-1],d4}; //middle <= {d3[INTWIDTH-1],d3}; middle <= {d3,1'b0}; end always @(posedge clk) if(go_d1) middle_d1 <= middle; wire [17:0] sum = go_d1 ? sum_b : sum_a; wire [17:0] coeff = go_d1 ? coeff_b : coeff_a; wire [35:0] prod; MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES" .LATENCY(1), // Desired clock cycle latency, 0-4 .WIDTH_A(18), // Multiplier A-input bus width, 1-25 .WIDTH_B(18)) // Multiplier B-input bus width, 1-18 mult (.P(prod), // Multiplier output bus, width determined by WIDTH_P parameter .A(coeff), // Multiplier input A bus, width determined by WIDTH_A parameter .B(sum), // Multiplier input B bus, width determined by WIDTH_B parameter .CE(go_d1 | go_d2), // 1-bit active high input clock enable .CLK(clk), // 1-bit positive edge clock input .RST(rst)); // 1-bit input active high reset localparam ACCWIDTH = 30; reg [ACCWIDTH-1:0] accum; always @(posedge clk) if(rst) accum <= 0; else if(go_d2) accum <= {middle_d1[17],middle_d1[17],middle_d1,{(16+ACCWIDTH-36){1'b0}}} + {prod[35:36-ACCWIDTH]}; else if(go_d3) accum <= accum + {prod[35:36-ACCWIDTH]}; wire [WIDTH:0] accum_rnd; wire [WIDTH-1:0] accum_rnd_clip; wire stb_round; round_sd #(.WIDTH_IN(ACCWIDTH),.WIDTH_OUT(WIDTH+1)) round_acc (.clk(clk), .reset(rst), .in(accum), .strobe_in(go_d4), .out(accum_rnd), .strobe_out(stb_round)); clip #(.bits_in(WIDTH+1),.bits_out(WIDTH)) clip (.in(accum_rnd), .out(accum_rnd_clip)); // Output always @(posedge clk) begin stb_out <= bypass ? stb_in : stb_round; data_out <= bypass ? data_in : accum_rnd_clip; end endmodule // small_hb_dec