// // Copyright 2011-2013 Ettus Research LLC // //! X300/X310 digital down-conversion chain module ddc_chain_x300 #( parameter BASE = 0, parameter DSPNO = 0, parameter WIDTH = 24 ) (input clk, input rst, input clr, input set_stb, input [7:0] set_addr, input [31:0] set_data, // From RX frontend input [WIDTH-1:0] rx_fe_i, input [WIDTH-1:0] rx_fe_q, // To RX control output [31:0] sample, input run, output strobe, output [31:0] debug ); localparam cwidth = 25; localparam zwidth = 24; wire [31:0] phase_inc; reg [31:0] phase; wire [17:0] scale_factor; wire [cwidth-1:0] i_cordic, q_cordic; wire [WIDTH-1:0] i_cordic_clip, q_cordic_clip; wire [WIDTH-1:0] i_cic, q_cic; wire [46:0] i_hb1, q_hb1; wire [46:0] i_hb2, q_hb2; wire [47:0] i_hb3, q_hb3; wire strobe_cic, strobe_hb1, strobe_hb2, strobe_hb3; wire [7:0] cic_decim_rate; reg [WIDTH-1:0] rx_fe_i_mux, rx_fe_q_mux; wire realmode; wire swap_iq; wire [1:0] hb_rate; wire [2:0] enable_hb = { hb_rate == 2'b11, hb_rate[1] == 1'b1, hb_rate != 2'b00 }; wire reload_go, reload_we1, reload_we2, reload_we3, reload_ld1, reload_ld2, reload_ld3; wire [17:0] coef_din; setting_reg #(.my_addr(BASE+0)) sr_0 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out(phase_inc),.changed()); setting_reg #(.my_addr(BASE+1), .width(18)) sr_1 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out(scale_factor),.changed()); setting_reg #(.my_addr(BASE+2), .width(10)) sr_2 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out({hb_rate, cic_decim_rate}),.changed()); setting_reg #(.my_addr(BASE+3), .width(2)) sr_3 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out({realmode,swap_iq}),.changed()); setting_reg #(.my_addr(BASE+4), .width(24)) sr_4 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out({reload_ld3,reload_we3,reload_ld2,reload_we2,reload_ld1,reload_we1,coef_din}),.changed(reload_go)); // MUX so we can do realmode signals on either input always @(posedge clk) if(swap_iq) begin rx_fe_i_mux <= rx_fe_q; rx_fe_q_mux <= realmode ? 0 : rx_fe_i; end else begin rx_fe_i_mux <= rx_fe_i; rx_fe_q_mux <= realmode ? 0 : rx_fe_q; end // NCO always @(posedge clk) if(rst) phase <= 0; else if(~run) phase <= 0; else phase <= phase + phase_inc; //sign extension of cordic input wire [cwidth-1:0] to_cordic_i, to_cordic_q; sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_i (.in(rx_fe_i_mux), .out(to_cordic_i)); sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_q (.in(rx_fe_q_mux), .out(to_cordic_q)); // CORDIC 24-bit I/O cordic_z24 #(.bitwidth(cwidth)) cordic(.clock(clk), .reset(rst), .enable(run), .xi(to_cordic_i),. yi(to_cordic_q), .zi(phase[31:32-zwidth]), .xo(i_cordic),.yo(q_cordic),.zo() ); clip_reg #(.bits_in(cwidth), .bits_out(WIDTH)) clip_cordic_i (.clk(clk), .in(i_cordic), .strobe_in(1'b1), .out(i_cordic_clip)); clip_reg #(.bits_in(cwidth), .bits_out(WIDTH)) clip_cordic_q (.clk(clk), .in(q_cordic), .strobe_in(1'b1), .out(q_cordic_clip)); // CIC decimator 24 bit I/O cic_strober cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(cic_decim_rate), .strobe_fast(1'b1),.strobe_slow(strobe_cic) ); cic_decim #(.bw(WIDTH)) decim_i (.clock(clk),.reset(rst),.enable(run), .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic), .signal_in(i_cordic_clip),.signal_out(i_cic)); cic_decim #(.bw(WIDTH)) decim_q (.clock(clk),.reset(rst),.enable(run), .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic), .signal_in(q_cordic_clip),.signal_out(q_cic)); // Halfbands wire nd1, nd2, nd3; wire rfd1, rfd2, rfd3; wire rdy1, rdy2, rdy3; wire data_valid1, data_valid2, data_valid3; localparam HB1_SCALE = 18; localparam HB2_SCALE = 18; localparam HB3_SCALE = 18; assign strobe_hb1 = data_valid1; assign strobe_hb2 = data_valid2; assign strobe_hb3 = data_valid3; assign nd1 = strobe_cic; assign nd2 = strobe_hb1; assign nd3 = strobe_hb2; hbdec1 hbdec1 (.clk(clk), // input clk .sclr(rst), // input sclr .ce(enable_hb[0]), // input ce .coef_ld(reload_go & reload_ld1), // input coef_ld .coef_we(reload_go & reload_we1), // input coef_we .coef_din(coef_din), // input [17 : 0] coef_din .rfd(rfd1), // output rfd .nd(nd1), // input nd .din_1(i_cic), // input [23 : 0] din_1 .din_2(q_cic), // input [23 : 0] din_2 .rdy(rdy1), // output rdy .data_valid(data_valid1), // output data_valid .dout_1(i_hb1), // output [46 : 0] dout_1 .dout_2(q_hb1)); // output [46 : 0] dout_2 hbdec2 hbdec2 (.clk(clk), // input clk .sclr(rst), // input sclr .ce(enable_hb[1]), // input ce .coef_ld(reload_go & reload_ld2), // input coef_ld .coef_we(reload_go & reload_we2), // input coef_we .coef_din(coef_din), // input [17 : 0] coef_din .rfd(rfd2), // output rfd .nd(nd2), // input nd .din_1(i_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_1 .din_2(q_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_2 .rdy(rdy2), // output rdy .data_valid(data_valid2), // output data_valid .dout_1(i_hb2), // output [46 : 0] dout_1 .dout_2(q_hb2)); // output [46 : 0] dout_2 hbdec3 hbdec3 (.clk(clk), // input clk .sclr(rst), // input sclr .ce(enable_hb[2]), // input ce .coef_ld(reload_go & reload_ld3), // input coef_ld .coef_we(reload_go & reload_we3), // input coef_we .coef_din(coef_din), // input [17 : 0] coef_din .rfd(rfd3), // output rfd .nd(strobe_hb2), // input nd .din_1(i_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_1 .din_2(q_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_2 .rdy(rdy3), // output rdy .data_valid(data_valid3), // output data_valid .dout_1(i_hb3), // output [47 : 0] dout_1 .dout_2(q_hb3)); // output [47 : 0] dout_2 reg [23:0] i_unscaled, q_unscaled; reg strobe_unscaled; always @(posedge clk) case(hb_rate) 2'd0 : begin strobe_unscaled <= strobe_cic; i_unscaled <= i_cic[23:0]; q_unscaled <= q_cic[23:0]; end 2'd1 : begin strobe_unscaled <= strobe_hb1; i_unscaled <= i_hb1[23+HB1_SCALE:HB1_SCALE]; q_unscaled <= q_hb1[23+HB1_SCALE:HB1_SCALE]; end 2'd2 : begin strobe_unscaled <= strobe_hb2; i_unscaled <= i_hb2[23+HB2_SCALE:HB2_SCALE]; q_unscaled <= q_hb2[23+HB2_SCALE:HB2_SCALE]; end 2'd3 : begin strobe_unscaled <= strobe_hb3; i_unscaled <= i_hb3[23+HB3_SCALE:HB3_SCALE]; q_unscaled <= q_hb3[23+HB3_SCALE:HB3_SCALE]; end endcase // case (hb_rate) wire [42:0] i_scaled, q_scaled; wire [23:0] i_clip, q_clip; reg strobe_scaled; wire strobe_clip; MULT_MACRO #(.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES" .LATENCY(1), // Desired clock cycle latency, 0-4 .WIDTH_A(25), // Multiplier A-input bus width, 1-25 .WIDTH_B(18)) // Multiplier B-input bus width, 1-18 SCALE_I (.P(i_scaled), // Multiplier output bus, width determined by WIDTH_P parameter .A({i_unscaled[23],i_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter .CE(strobe_unscaled), // 1-bit active high input clock enable .CLK(clk), // 1-bit positive edge clock input .RST(rst)); // 1-bit input active high reset MULT_MACRO #(.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES" .LATENCY(1), // Desired clock cycle latency, 0-4 .WIDTH_A(25), // Multiplier A-input bus width, 1-25 .WIDTH_B(18)) // Multiplier B-input bus width, 1-18 SCALE_Q (.P(q_scaled), // Multiplier output bus, width determined by WIDTH_P parameter .A({q_unscaled[23],q_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter .CE(strobe_unscaled), // 1-bit active high input clock enable .CLK(clk), // 1-bit positive edge clock input .RST(rst)); // 1-bit input active high reset always @(posedge clk) strobe_scaled <= strobe_unscaled; clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_i (.clk(clk), .in(i_scaled[42:14]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip)); clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_q (.clk(clk), .in(q_scaled[42:14]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out()); round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16)) round_i (.clk(clk), .reset(rst), .in(i_clip), .strobe_in(strobe_clip), .out(sample[31:16]), .strobe_out(strobe)); round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16)) round_q (.clk(clk), .reset(rst), .in(q_clip), .strobe_in(strobe_clip), .out(sample[15:0]), .strobe_out()); endmodule // ddc_chain