/* Copyright (c) 2015-2016 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * Content Addressable Memory (shift register based) */ module cam_srl #( // search data bus width parameter DATA_WIDTH = 64, // memory size in log2(words) parameter ADDR_WIDTH = 5, // width of data bus slices (4 for SRL16, 5 for SRL32) parameter SLICE_WIDTH = 4 ) ( input wire clk, input wire rst, input wire [ADDR_WIDTH-1:0] write_addr, input wire [DATA_WIDTH-1:0] write_data, input wire write_delete, input wire write_enable, output wire write_busy, input wire [DATA_WIDTH-1:0] compare_data, output wire [2**ADDR_WIDTH-1:0] match_many, output wire [2**ADDR_WIDTH-1:0] match_single, output wire [ADDR_WIDTH-1:0] match_addr, output wire match ); // total number of slices (enough to cover DATA_WIDTH with address inputs) localparam SLICE_COUNT = (DATA_WIDTH + SLICE_WIDTH - 1) / SLICE_WIDTH; // depth of RAMs localparam RAM_DEPTH = 2**ADDR_WIDTH; localparam [1:0] STATE_INIT = 2'd0, STATE_IDLE = 2'd1, STATE_WRITE = 2'd2, STATE_DELETE = 2'd3; reg [1:0] state_reg = STATE_INIT, state_next; wire [SLICE_COUNT*SLICE_WIDTH-1:0] compare_data_padded = {{SLICE_COUNT*SLICE_WIDTH-DATA_WIDTH{1'b0}}, compare_data}; wire [SLICE_COUNT*SLICE_WIDTH-1:0] write_data_padded = {{SLICE_COUNT*SLICE_WIDTH-DATA_WIDTH{1'b0}}, write_data}; reg [SLICE_WIDTH-1:0] count_reg = {SLICE_WIDTH{1'b1}}, count_next; reg [SLICE_COUNT-1:0] shift_data; reg [RAM_DEPTH-1:0] shift_en; reg [ADDR_WIDTH-1:0] write_addr_reg = {ADDR_WIDTH{1'b0}}, write_addr_next; reg [SLICE_COUNT*SLICE_WIDTH-1:0] write_data_padded_reg = {SLICE_COUNT*SLICE_WIDTH{1'b0}}, write_data_padded_next; reg write_busy_reg = 1'b1; assign write_busy = write_busy_reg; reg [RAM_DEPTH-1:0] match_raw_out[SLICE_COUNT-1:0]; reg [RAM_DEPTH-1:0] match_many_raw; reg [RAM_DEPTH-1:0] match_many_reg = {RAM_DEPTH{1'b0}}; assign match_many = match_many_reg; integer k; always @* begin match_many_raw = ~shift_en; for (k = 0; k < SLICE_COUNT; k = k + 1) begin match_many_raw = match_many_raw & match_raw_out[k]; end end cam_priority_encoder #( .WIDTH(RAM_DEPTH), .LSB_PRIORITY("HIGH") ) priority_encoder_inst ( .input_unencoded(match_many_reg), .output_valid(match), .output_encoded(match_addr), .output_unencoded(match_single) ); integer i; // SRLs genvar row_ind, slice_ind; generate for (row_ind = 0; row_ind < RAM_DEPTH; row_ind = row_ind + 1) begin : row for (slice_ind = 0; slice_ind < SLICE_COUNT; slice_ind = slice_ind + 1) begin : slice reg [2**SLICE_WIDTH-1:0] srl_mem = {2**SLICE_WIDTH{1'b0}}; // match always @* begin match_raw_out[slice_ind][row_ind] = srl_mem[compare_data_padded[SLICE_WIDTH * slice_ind +: SLICE_WIDTH]]; end // write always @(posedge clk) begin if (shift_en[row_ind]) begin srl_mem <= {srl_mem[2**SLICE_WIDTH-2:0], shift_data[slice_ind]}; end end end end endgenerate // match always @(posedge clk) begin match_many_reg <= match_many_raw; end // write always @* begin state_next = STATE_IDLE; count_next = count_reg; shift_data = {SLICE_COUNT{1'b0}}; shift_en = {RAM_DEPTH{1'b0}}; write_addr_next = write_addr_reg; write_data_padded_next = write_data_padded_reg; case (state_reg) STATE_INIT: begin // zero out shift registers shift_en = {RAM_DEPTH{1'b1}}; shift_data = {SLICE_COUNT{1'b0}}; if (count_reg == 0) begin state_next = STATE_IDLE; end else begin count_next = count_reg - 1; state_next = STATE_INIT; end end STATE_IDLE: begin if (write_enable) begin write_addr_next = write_addr; write_data_padded_next = write_data_padded; count_next = {SLICE_WIDTH{1'b1}}; if (write_delete) begin state_next = STATE_DELETE; end else begin state_next = STATE_WRITE; end end else begin state_next = STATE_IDLE; end end STATE_WRITE: begin // write entry shift_en = 1'b1 << write_addr; for (i = 0; i < SLICE_COUNT; i = i + 1) begin shift_data[i] = count_reg == write_data_padded_reg[SLICE_WIDTH * i +: SLICE_WIDTH]; end if (count_reg == 0) begin state_next = STATE_IDLE; end else begin count_next = count_reg - 1; state_next = STATE_WRITE; end end STATE_DELETE: begin // delete entry shift_en = 1'b1 << write_addr; shift_data = {SLICE_COUNT{1'b0}}; if (count_reg == 0) begin state_next = STATE_IDLE; end else begin count_next = count_reg - 1; state_next = STATE_DELETE; end end endcase end always @(posedge clk) begin if (rst) begin state_reg <= STATE_INIT; count_reg <= {SLICE_WIDTH{1'b1}}; write_busy_reg <= 1'b1; end else begin state_reg <= state_next; count_reg <= count_next; write_busy_reg <= state_next != STATE_IDLE; end write_addr_reg <= write_addr_next; write_data_padded_reg <= write_data_padded_next; end endmodule