module axi_dma_master_tb; wire aclk; // Global AXI clock wire aresetn; // Global AXI reset, active low. // // AXI Write address channel // wire [0 : 0] m_axi_awid; // Write address ID. This signal is the identification tag for the write address signals wire [31 : 0] m_axi_awaddr; // Write address. The write address gives the address of the first transfer in a write burst wire [7 : 0] m_axi_awlen; // Burst length. The burst length gives the exact number of transfers in a burst. wire [2 : 0] m_axi_awsize; // Burst size. This signal indicates the size of each transfer in the burst. wire [1 : 0] m_axi_awburst; // Burst type. The burst type and the size information, determine how the address is calculated wire [0 : 0] m_axi_awlock; // Lock type. Provides additional information about the atomic characteristics of the transfer. wire [3 : 0] m_axi_awcache; // Memory type. This signal indicates how transactions are required to progress wire [2 : 0] m_axi_awprot; // Protection type. This signal indicates the privilege and security level of the transaction wire [3 : 0] m_axi_awqos; // Quality of Service, QoS. The QoS identifier sent for each write transaction wire [3 : 0] m_axi_awregion; // Region identifier. Permits a single physical interface on a slave to be re-used. wire [0 : 0] m_axi_awuser; // User signal. Optional User-defined signal in the write address channel. wire m_axi_awvalid; // Write address valid. This signal indicates that the channel is signaling valid write addr wire m_axi_awready; // Write address ready. This signal indicates that the slave is ready to accept an address // // AXI Write data channel. // wire [63 : 0] m_axi_wdata; // Write data wire [7 : 0] m_axi_wstrb; // Write strobes. This signal indicates which byte lanes hold valid data. wire m_axi_wlast; // Write last. This signal indicates the last transfer in a write burst wire [0 : 0] m_axi_wuser; // User signal. Optional User-defined signal in the write data channel. wire m_axi_wvalid; // Write valid. This signal indicates that valid write data and strobes are available. wire m_axi_wready; // Write ready. This signal indicates that the slave can accept the write data. // // AXI Write response channel signals // wire [0 : 0] m_axi_bid; // Response ID tag. This signal is the ID tag of the write response. wire [1 : 0] m_axi_bresp; // Write response. This signal indicates the status of the write transaction. wire [0 : 0] m_axi_buser; // User signal. Optional User-defined signal in the write response channel. wire m_axi_bvalid; // Write response valid. This signal indicates that the channel is signaling a valid response wire m_axi_bready; // Response ready. This signal indicates that the master can accept a write response // // AXI Read address channel // wire [0 : 0] m_axi_arid; // Read address ID. This signal is the identification tag for the read address group of signals wire [31 : 0] m_axi_araddr; // Read address. The read address gives the address of the first transfer in a read burst wire [7 : 0] m_axi_arlen; // Burst length. This signal indicates the exact number of transfers in a burst. wire [2 : 0] m_axi_arsize; // Burst size. This signal indicates the size of each transfer in the burst. wire [1 : 0] m_axi_arburst; // Burst type. The burst type and the size information determine how the address for each transfer wire [0 : 0] m_axi_arlock; // Lock type. This signal provides additional information about the atomic characteristics wire [3 : 0] m_axi_arcache; // Memory type. This signal indicates how transactions are required to progress wire [2 : 0] m_axi_arprot; // Protection type. This signal indicates the privilege and security level of the transaction wire [3 : 0] m_axi_arqos; // Quality of Service, QoS. QoS identifier sent for each read transaction. wire [3 : 0] m_axi_arregion; // Region identifier. Permits a single physical interface on a slave to be re-used wire [0 : 0] m_axi_aruser; // User signal. Optional User-defined signal in the read address channel. wire m_axi_arvalid; // Read address valid. This signal indicates that the channel is signaling valid read addr wire m_axi_arready; // Read address ready. This signal indicates that the slave is ready to accept an address // // AXI Read data channel // wire [0 : 0] m_axi_rid; // Read ID tag. This signal is the identification tag for the read data group of signals wire [63 : 0] m_axi_rdata; // Read data. wire [1 : 0] m_axi_rresp; // Read response. This signal indicates the status of the read transfer wire m_axi_rlast; // Read last. This signal indicates the last transfer in a read burst. wire [0 : 0] m_axi_ruser; // User signal. Optional User-defined signal in the read data channel. wire m_axi_rvalid; // Read valid. This signal indicates that the channel is signaling the required read data. wire m_axi_rready; // Read ready. This signal indicates that the master can accept the read data and response // // DMA interface for Write transaction // wire [31:0] write_addr; // Byte address for start of write transaction (should be 64bit alligned) wire [3:0] write_count; // Count of 64 words to write. wire write_ctrl_valid; wire write_ctrl_ready; wire [63:0] write_data; wire write_data_valid; wire write_data_ready; // // DMA interface for Read // wire [31:0] read_addr; // Byte address for start of read transaction (should be 64bit alligned) wire [3:0] read_count; // Count of 64 words to read. wire read_ctrl_valid; wire read_ctrl_ready; wire [63:0] read_data; wire read_data_valid; wire read_data_ready; axi_dma_master axi_dma_master_i1 ( .aclk(s_aclk), // input s_aclk .aresetn(s_aresetn), // input s_aresetn // .s_axi_awid(s_axi_awid), // input [0 : 0] s_axi_awid .s_axi_awaddr(s_axi_awaddr), // input [31 : 0] s_axi_awaddr .s_axi_awlen(s_axi_awlen), // input [7 : 0] s_axi_awlen .s_axi_awsize(s_axi_awsize), // input [2 : 0] s_axi_awsize .s_axi_awburst(s_axi_awburst), // input [1 : 0] s_axi_awburst .s_axi_awvalid(s_axi_awvalid), // input s_axi_awvalid .s_axi_awready(s_axi_awready), // output s_axi_awready // .s_axi_wdata(s_axi_wdata), // input [63 : 0] s_axi_wdata .s_axi_wstrb(s_axi_wstrb), // input [7 : 0] s_axi_wstrb .s_axi_wlast(s_axi_wlast), // input s_axi_wlast .s_axi_wvalid(s_axi_wvalid), // input s_axi_wvalid .s_axi_wready(s_axi_wready), // output s_axi_wready // .s_axi_bid(s_axi_bid), // output [0 : 0] s_axi_bid .s_axi_bresp(s_axi_bresp), // output [1 : 0] s_axi_bresp .s_axi_bvalid(s_axi_bvalid), // output s_axi_bvalid .s_axi_bready(s_axi_bready), // input s_axi_bready // .s_axi_arid(s_axi_arid), // input [0 : 0] s_axi_arid .s_axi_araddr(s_axi_araddr), // input [31 : 0] s_axi_araddr .s_axi_arlen(s_axi_arlen), // input [7 : 0] s_axi_arlen .s_axi_arsize(s_axi_arsize), // input [2 : 0] s_axi_arsize .s_axi_arburst(s_axi_arburst), // input [1 : 0] s_axi_arburst .s_axi_arvalid(s_axi_arvalid), // input s_axi_arvalid .s_axi_arready(s_axi_arready), // output s_axi_arready // .s_axi_rid(s_axi_rid), // output [0 : 0] s_axi_rid .s_axi_rdata(s_axi_rdata), // output [63 : 0] s_axi_rdata .s_axi_rresp(s_axi_rresp), // output [1 : 0] s_axi_rresp .s_axi_rlast(s_axi_rlast), // output s_axi_rlast .s_axi_rvalid(s_axi_rvalid), // output s_axi_rvalid .s_axi_rready(s_axi_rready) // input s_axi_rready ); axi4_bram_1kx64 axi4_bram_1kx64_i1 ( .s_aclk(s_aclk), // input s_aclk .s_aresetn(s_aresetn), // input s_aresetn .s_axi_awid(s_axi_awid), // input [0 : 0] s_axi_awid .s_axi_awaddr(s_axi_awaddr), // input [31 : 0] s_axi_awaddr .s_axi_awlen(s_axi_awlen), // input [7 : 0] s_axi_awlen .s_axi_awsize(s_axi_awsize), // input [2 : 0] s_axi_awsize .s_axi_awburst(s_axi_awburst), // input [1 : 0] s_axi_awburst .s_axi_awvalid(s_axi_awvalid), // input s_axi_awvalid .s_axi_awready(s_axi_awready), // output s_axi_awready .s_axi_wdata(s_axi_wdata), // input [63 : 0] s_axi_wdata .s_axi_wstrb(s_axi_wstrb), // input [7 : 0] s_axi_wstrb .s_axi_wlast(s_axi_wlast), // input s_axi_wlast .s_axi_wvalid(s_axi_wvalid), // input s_axi_wvalid .s_axi_wready(s_axi_wready), // output s_axi_wready .s_axi_bid(s_axi_bid), // output [0 : 0] s_axi_bid .s_axi_bresp(s_axi_bresp), // output [1 : 0] s_axi_bresp .s_axi_bvalid(s_axi_bvalid), // output s_axi_bvalid .s_axi_bready(s_axi_bready), // input s_axi_bready .s_axi_arid(s_axi_arid), // input [0 : 0] s_axi_arid .s_axi_araddr(s_axi_araddr), // input [31 : 0] s_axi_araddr .s_axi_arlen(s_axi_arlen), // input [7 : 0] s_axi_arlen .s_axi_arsize(s_axi_arsize), // input [2 : 0] s_axi_arsize .s_axi_arburst(s_axi_arburst), // input [1 : 0] s_axi_arburst .s_axi_arvalid(s_axi_arvalid), // input s_axi_arvalid .s_axi_arready(s_axi_arready), // output s_axi_arready .s_axi_rid(s_axi_rid), // output [0 : 0] s_axi_rid .s_axi_rdata(s_axi_rdata), // output [63 : 0] s_axi_rdata .s_axi_rresp(s_axi_rresp), // output [1 : 0] s_axi_rresp .s_axi_rlast(s_axi_rlast), // output s_axi_rlast .s_axi_rvalid(s_axi_rvalid), // output s_axi_rvalid .s_axi_rready(s_axi_rready) // input s_axi_rready ); endmodule // axi_dma_master_tb