`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// module u2_rev3 ( // Misc, debug output [5:0] leds, output [31:0] debug, output [1:0] debug_clk, output uart_tx_o, input uart_rx_i, // Expansion input exp_time_in_p, // Diff input exp_time_in_n, // Diff output exp_time_out_p, // Diff output exp_time_out_n, // Diff // GMII // GMII-CTRL input GMII_COL, input GMII_CRS, // GMII-TX output reg [7:0] GMII_TXD, output reg GMII_TX_EN, output reg GMII_TX_ER, output GMII_GTX_CLK, input GMII_TX_CLK, // 100mbps clk // GMII-RX input [7:0] GMII_RXD, input GMII_RX_CLK, input GMII_RX_DV, input GMII_RX_ER, // GMII-Management inout MDIO, output MDC, input PHY_INTn, // open drain output PHY_RESETn, input PHY_CLK, // possibly use on-board osc // RAM inout [17:0] RAM_D, output [18:0] RAM_A, output RAM_CE1n, output RAM_CENn, output RAM_CLK, output RAM_WEn, output RAM_OEn, output RAM_LDn, // SERDES output ser_enable, output ser_prbsen, output ser_loopen, output ser_rx_en, output ser_tx_clk, output reg [15:0] ser_t, output reg ser_tklsb, output reg ser_tkmsb, input ser_rx_clk, input [15:0] ser_r, input ser_rklsb, input ser_rkmsb, // CPLD interface output cpld_start, // AA9 output cpld_mode, // U12 output cpld_done, // V12 input cpld_din, // AA14 Now shared with CFG_Din input cpld_clk, // AB14 serial clock input cpld_detached,// V11 unused output cpld_init_b, // W12 unused dual purpose output cpld_misc, // Y12 // Watchdog interface input POR, output WDI, // ADC input [13:0] adc_a, input adc_ovf_a, output adc_oen_a, output adc_pdn_a, input [13:0] adc_b, input adc_ovf_b, output adc_oen_b, output adc_pdn_b, // DAC output reg [15:0] dac_a, output reg [15:0] dac_b, input dac_lock, // unused for now // I2C inout SCL, inout SDA, // Clock Gen Control output [1:0] clk_en, output [1:0] clk_sel, input clk_func, // FIXME is an input to control the 9510 input clk_status, // Clocks input clk_fpga_p, // Diff input clk_fpga_n, // Diff input clk_to_mac, input pps_in, // Generic SPI output sclk, output sen_clk, output sen_dac, output sdi, input sdo, // TX DBoard output sen_tx_db, output sclk_tx_db, input sdo_tx_db, output sdi_tx_db, output sen_tx_adc, output sclk_tx_adc, input sdo_tx_adc, output sdi_tx_adc, output sen_tx_dac, output sclk_tx_dac, output sdi_tx_dac, inout [15:0] io_tx, // RX DBoard output sen_rx_db, output sclk_rx_db, input sdo_rx_db, output sdi_rx_db, output sen_rx_adc, output sclk_rx_adc, input sdo_rx_adc, output sdi_rx_adc, output sen_rx_dac, output sclk_rx_dac, output sdi_rx_dac, inout [15:0] io_rx ); assign cpld_init_b = 0; // FPGA-specific pins connections wire clk_fpga, dsp_clk, clk_div, dcm_out, wb_clk, clock_ready; wire clk90, clk180, clk270; // reset the watchdog continuously reg [15:0] wd; wire config_success; always @(posedge wb_clk) if(~config_success) wd <= 0; else wd <= wd + 1; assign WDI = wd[15]; wire clk_fpga_unbuf; IBUFGDS clk_fpga_pin (.O(clk_fpga_unbuf),.I(clk_fpga_p),.IB(clk_fpga_n)); BUFG clk_fpga_BUF (.O(clk_fpga),.I(clk_fpga_unbuf)); defparam clk_fpga_pin.IOSTANDARD = "LVPECL_25"; wire cpld_clock_buf; BUFG cpld_clock_BUF (.O(cpld_clock_buf),.I(cpld_clock)); wire exp_time_in; IBUFDS exp_time_in_pin (.O(exp_time_in),.I(exp_time_in_p),.IB(exp_time_in_n)); defparam exp_time_in_pin.IOSTANDARD = "LVDS_25"; wire exp_time_out; OBUFDS exp_time_out_pin (.O(exp_time_out_p),.OB(exp_time_out_n),.I(exp_time_out)); defparam exp_time_out_pin.IOSTANDARD = "LVDS_25"; reg [5:0] clock_ready_d; always @(posedge clk_fpga) clock_ready_d[5:0] <= {clock_ready_d[4:0],clock_ready}; wire dcm_rst = ~&clock_ready_d & |clock_ready_d; wire adc_on_a, adc_on_b, adc_oe_a, adc_oe_b; assign adc_oen_a = ~adc_oe_a; assign adc_oen_b = ~adc_oe_b; assign adc_pdn_a = ~adc_on_a; assign adc_pdn_b = ~adc_on_b; reg [13:0] adc_a_reg1, adc_b_reg1, adc_a_reg2, adc_b_reg2; reg adc_ovf_a_reg1, adc_ovf_a_reg2, adc_ovf_b_reg1, adc_ovf_b_reg2; // ADC A and B are swapped in schematic to facilitate clean layout always @(posedge dsp_clk) begin adc_a_reg1 <= adc_b; adc_b_reg1 <= adc_a; adc_ovf_a_reg1 <= adc_ovf_b; adc_ovf_b_reg1 <= adc_ovf_a; end always @(posedge dsp_clk) begin adc_a_reg2 <= adc_a_reg1; adc_b_reg2 <= adc_b_reg1; adc_ovf_a_reg2 <= adc_ovf_a_reg1; adc_ovf_b_reg2 <= adc_ovf_b_reg1; end // always @ (posedge dsp_clk) // Handle Clocks DCM DCM_INST (.CLKFB(dsp_clk), .CLKIN(clk_fpga), .DSSEN(0), .PSCLK(0), .PSEN(0), .PSINCDEC(0), .RST(dcm_rst), .CLKDV(clk_div), .CLKFX(), .CLKFX180(), .CLK0(dcm_out), .CLK2X(), .CLK2X180(), .CLK90(clk90), .CLK180(clk180), .CLK270(clk270), .LOCKED(LOCKED_OUT), .PSDONE(), .STATUS()); defparam DCM_INST.CLK_FEEDBACK = "1X"; defparam DCM_INST.CLKDV_DIVIDE = 2.0; defparam DCM_INST.CLKFX_DIVIDE = 1; defparam DCM_INST.CLKFX_MULTIPLY = 4; defparam DCM_INST.CLKIN_DIVIDE_BY_2 = "FALSE"; defparam DCM_INST.CLKIN_PERIOD = 10.000; defparam DCM_INST.CLKOUT_PHASE_SHIFT = "NONE"; defparam DCM_INST.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS"; defparam DCM_INST.DFS_FREQUENCY_MODE = "LOW"; defparam DCM_INST.DLL_FREQUENCY_MODE = "LOW"; defparam DCM_INST.DUTY_CYCLE_CORRECTION = "TRUE"; defparam DCM_INST.FACTORY_JF = 16'h8080; defparam DCM_INST.PHASE_SHIFT = 0; defparam DCM_INST.STARTUP_WAIT = "FALSE"; BUFG dspclk_BUFG (.I(dcm_out), .O(dsp_clk)); BUFG wbclk_BUFG (.I(clk_div), .O(wb_clk)); // I2C -- Don't use external transistors for open drain, the FPGA implements this IOBUF scl_pin(.O(scl_pad_i), .IO(SCL), .I(scl_pad_o), .T(scl_pad_oen_o)); IOBUF sda_pin(.O(sda_pad_i), .IO(SDA), .I(sda_pad_o), .T(sda_pad_oen_o)); // LEDs are active low outputs wire [5:0] leds_int; assign leds = 6'b011111 ^ leds_int; // all except eth are active-low // SPI wire miso, mosi, sclk_int; assign {sclk,sdi} = (~sen_clk | ~sen_dac) ? {sclk_int,mosi} : 2'b0; assign {sclk_tx_db,sdi_tx_db} = ~sen_tx_db ? {sclk_int,mosi} : 2'b0; assign {sclk_tx_dac,sdi_tx_dac} = ~sen_tx_dac ? {sclk_int,mosi} : 2'b0; assign {sclk_tx_adc,sdi_tx_adc} = ~sen_tx_adc ? {sclk_int,mosi} : 2'b0; assign {sclk_rx_db,sdi_rx_db} = ~sen_rx_db ? {sclk_int,mosi} : 2'b0; assign {sclk_rx_dac,sdi_rx_dac} = ~sen_rx_dac ? {sclk_int,mosi} : 2'b0; assign {sclk_rx_adc,sdi_rx_adc} = ~sen_rx_adc ? {sclk_int,mosi} : 2'b0; assign miso = (~sen_clk & sdo) | (~sen_dac & sdo) | (~sen_tx_db & sdo_tx_db) | (~sen_tx_adc & sdo_tx_adc) | (~sen_rx_db & sdo_rx_db) | (~sen_rx_adc & sdo_rx_adc); wire GMII_TX_EN_unreg, GMII_TX_ER_unreg; wire [7:0] GMII_TXD_unreg; wire GMII_GTX_CLK_int; always @(posedge GMII_GTX_CLK_int) begin GMII_TX_EN <= GMII_TX_EN_unreg; GMII_TX_ER <= GMII_TX_ER_unreg; GMII_TXD <= GMII_TXD_unreg; end OFDDRRSE OFDDRRSE_gmii_inst (.Q(GMII_GTX_CLK), // Data output (connect directly to top-level port) .C0(GMII_GTX_CLK_int), // 0 degree clock input .C1(~GMII_GTX_CLK_int), // 180 degree clock input .CE(1), // Clock enable input .D0(0), // Posedge data input .D1(1), // Negedge data input .R(0), // Synchronous reset input .S(0) // Synchronous preset input ); wire ser_tklsb_unreg, ser_tkmsb_unreg; wire [15:0] ser_t_unreg; wire ser_tx_clk_int; always @(posedge ser_tx_clk_int) begin ser_tklsb <= ser_tklsb_unreg; ser_tkmsb <= ser_tkmsb_unreg; ser_t <= ser_t_unreg; end assign ser_tx_clk = clk_fpga; reg [15:0] ser_r_int; reg ser_rklsb_int, ser_rkmsb_int; wire ser_rx_clk_buf; BUFG ser_rx_clk_BUF (.O(ser_rx_clk_buf),.I(ser_rx_clk)); always @(posedge ser_rx_clk_buf) begin ser_r_int <= ser_r; ser_rklsb_int <= ser_rklsb; ser_rkmsb_int <= ser_rkmsb; end wire [15:0] dac_a_int, dac_b_int; // DAC A and B are swapped in schematic to facilitate clean layout // DAC A is also inverted in schematic to facilitate clean layout always @(posedge dsp_clk) dac_a <= ~dac_b_int; always @(posedge dsp_clk) dac_b <= dac_a_int; /* OFDDRRSE OFDDRRSE_serdes_inst (.Q(ser_tx_clk), // Data output (connect directly to top-level port) .C0(ser_tx_clk_int), // 0 degree clock input .C1(~ser_tx_clk_int), // 180 degree clock input .CE(1), // Clock enable input .D0(0), // Posedge data input .D1(1), // Negedge data input .R(0), // Synchronous reset input .S(0) // Synchronous preset input ); */ wire [17:0] RAM_D_pi; wire [17:0] RAM_D_po; wire RAM_D_poe; genvar i; // // Instantiate IO for Bidirectional bus to SRAM // generate for (i=0;i<18;i=i+1) begin : gen_RAM_D_IO IOBUF #( .DRIVE(12), .IOSTANDARD("LVCMOS25"), .SLEW("FAST") ) RAM_D_i ( .O(RAM_D_pi[i]), .I(RAM_D_po[i]), .IO(RAM_D[i]), .T(RAM_D_poe) ); end // block: gen_RAM_D_IO endgenerate // // DCM edits start here // wire RAM_CLK_buf; wire clk_to_mac_buf; wire clk125_ext_clk0; wire clk125_ext_clk180; wire clk125_ext_clk0_buf; wire clk125_ext_clk180_buf; wire clk125_int_buf; wire clk125_int; IBUFG clk_to_mac_buf_i1 (.I(clk_to_mac), .O(clk_to_mac_buf)); DCM DCM_INST1 (.CLKFB(RAM_CLK_buf), .CLKIN(clk_to_mac_buf), .DSSEN(1'b0), .PSCLK(1'b0), .PSEN(1'b0), .PSINCDEC(1'b0), .RST(1'b0), .CLK0(clk125_ext_clk0), .CLK180(clk125_ext_clk180) ); defparam DCM_INST1.CLK_FEEDBACK = "1X"; defparam DCM_INST1.CLKDV_DIVIDE = 2.0; defparam DCM_INST1.CLKFX_DIVIDE = 1; defparam DCM_INST1.CLKFX_MULTIPLY = 4; defparam DCM_INST1.CLKIN_DIVIDE_BY_2 = "FALSE"; defparam DCM_INST1.CLKIN_PERIOD = 8.000; defparam DCM_INST1.CLKOUT_PHASE_SHIFT = "FIXED"; defparam DCM_INST1.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS"; defparam DCM_INST1.DFS_FREQUENCY_MODE = "LOW"; defparam DCM_INST1.DLL_FREQUENCY_MODE = "LOW"; defparam DCM_INST1.DUTY_CYCLE_CORRECTION = "TRUE"; defparam DCM_INST1.FACTORY_JF = 16'h8080; defparam DCM_INST1.PHASE_SHIFT = -64; defparam DCM_INST1.STARTUP_WAIT = "FALSE"; IBUFG RAM_CLK_buf_i1 (.I(RAM_CLK), .O(RAM_CLK_buf)); BUFG clk125_ext_clk0_buf_i1 (.I(clk125_ext_clk0), .O(clk125_ext_clk0_buf)); BUFG clk125_ext_clk180_buf_i1 (.I(clk125_ext_clk180), .O(clk125_ext_clk180_buf)); OFDDRRSE RAM_CLK_i1 (.Q(RAM_CLK), .C0(clk125_ext_clk0_buf), .C1(clk125_ext_clk180_buf), .CE(1'b1), .D0(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0)); // SRL16 dcm2_rst_i1 (.D(1'b0), // .CLK(clk_to_mac_buf), // .Q(dcm2_rst), // .A0(1'b1), // .A1(1'b1), // .A2(1'b1), // .A3(1'b1)); // synthesis attribute init of dcm2_rst_i1 is "000F"; DCM DCM_INST2 (.CLKFB(clk125_int_buf), .CLKIN(clk_to_mac_buf), .DSSEN(1'b0), .PSCLK(1'b0), .PSEN(1'b0), .PSINCDEC(1'b0), .RST(1'b0), .CLK0(clk125_int)); defparam DCM_INST2.CLK_FEEDBACK = "1X"; defparam DCM_INST2.CLKDV_DIVIDE = 2.0; defparam DCM_INST2.CLKFX_DIVIDE = 1; defparam DCM_INST2.CLKFX_MULTIPLY = 4; defparam DCM_INST2.CLKIN_DIVIDE_BY_2 = "FALSE"; defparam DCM_INST2.CLKIN_PERIOD = 8.000; defparam DCM_INST2.CLKOUT_PHASE_SHIFT = "NONE"; defparam DCM_INST2.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS"; defparam DCM_INST2.DFS_FREQUENCY_MODE = "LOW"; defparam DCM_INST2.DLL_FREQUENCY_MODE = "LOW"; defparam DCM_INST2.DUTY_CYCLE_CORRECTION = "TRUE"; defparam DCM_INST2.FACTORY_JF = 16'h8080; defparam DCM_INST2.PHASE_SHIFT = 0; defparam DCM_INST2.STARTUP_WAIT = "FALSE"; BUFG clk125_int_buf_i1 (.I(clk125_int), .O(clk125_int_buf)); // // DCM edits end here // u2_core u2_core(.dsp_clk (dsp_clk), .wb_clk (wb_clk), .clock_ready (clock_ready), .clk_to_mac (clk125_int_buf), .pps_in (pps_in), .leds (leds_int), .debug (debug[31:0]), .debug_clk (debug_clk[1:0]), .exp_time_in (exp_time_in), .exp_time_out (exp_time_out), .GMII_COL (GMII_COL), .GMII_CRS (GMII_CRS), .GMII_TXD (GMII_TXD_unreg[7:0]), .GMII_TX_EN (GMII_TX_EN_unreg), .GMII_TX_ER (GMII_TX_ER_unreg), .GMII_GTX_CLK (GMII_GTX_CLK_int), .GMII_TX_CLK (GMII_TX_CLK), .GMII_RXD (GMII_RXD[7:0]), .GMII_RX_CLK (GMII_RX_CLK), .GMII_RX_DV (GMII_RX_DV), .GMII_RX_ER (GMII_RX_ER), .MDIO (MDIO), .MDC (MDC), .PHY_INTn (PHY_INTn), .PHY_RESETn (PHY_RESETn), .ser_enable (ser_enable), .ser_prbsen (ser_prbsen), .ser_loopen (ser_loopen), .ser_rx_en (ser_rx_en), .ser_tx_clk (ser_tx_clk_int), .ser_t (ser_t_unreg[15:0]), .ser_tklsb (ser_tklsb_unreg), .ser_tkmsb (ser_tkmsb_unreg), .ser_rx_clk (ser_rx_clk_buf), .ser_r (ser_r_int[15:0]), .ser_rklsb (ser_rklsb_int), .ser_rkmsb (ser_rkmsb_int), .cpld_start (cpld_start), .cpld_mode (cpld_mode), .cpld_done (cpld_done), .cpld_din (cpld_din), .cpld_clk (cpld_clk), .cpld_detached (cpld_detached), .cpld_misc (cpld_misc), .cpld_init_b (cpld_init_b), .por (~POR), .config_success (config_success), .adc_a (adc_a_reg2), .adc_ovf_a (adc_ovf_a_reg2), .adc_on_a (adc_on_a), .adc_oe_a (adc_oe_a), .adc_b (adc_b_reg2), .adc_ovf_b (adc_ovf_b_reg2), .adc_on_b (adc_on_b), .adc_oe_b (adc_oe_b), .dac_a (dac_a_int), .dac_b (dac_b_int), .scl_pad_i (scl_pad_i), .scl_pad_o (scl_pad_o), .scl_pad_oen_o (scl_pad_oen_o), .sda_pad_i (sda_pad_i), .sda_pad_o (sda_pad_o), .sda_pad_oen_o (sda_pad_oen_o), .clk_en (clk_en[1:0]), .clk_sel (clk_sel[1:0]), .clk_func (clk_func), .clk_status (clk_status), .sclk (sclk_int), .mosi (mosi), .miso (miso), .sen_clk (sen_clk), .sen_dac (sen_dac), .sen_tx_db (sen_tx_db), .sen_tx_adc (sen_tx_adc), .sen_tx_dac (sen_tx_dac), .sen_rx_db (sen_rx_db), .sen_rx_adc (sen_rx_adc), .sen_rx_dac (sen_rx_dac), .io_tx (io_tx[15:0]), .io_rx (io_rx[15:0]), .RAM_D_pi (RAM_D_pi), .RAM_D_po (RAM_D_po), .RAM_D_poe (RAM_D_poe), .RAM_A (RAM_A), .RAM_CE1n (RAM_CE1n), .RAM_CENn (RAM_CENn), // .RAM_CLK (RAM_CLK), .RAM_WEn (RAM_WEn), .RAM_OEn (RAM_OEn), .RAM_LDn (RAM_LDn), .uart_tx_o (uart_tx_o), .uart_rx_i (uart_rx_i), .uart_baud_o (), .sim_mode (1'b0), .clock_divider (2) ); endmodule // u2_rev2