// // Copyright 2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // `timescale 1ns / 1ps //`define LVDS 1 //`define DCM_FOR_RAMCLK ////////////////////////////////////////////////////////////////////////////////// module u2plus ( input CLK_FPGA_P, input CLK_FPGA_N, // Diff // ADC input ADC_clkout_p, input ADC_clkout_n, input ADCA_12_p, input ADCA_12_n, input ADCA_10_p, input ADCA_10_n, input ADCA_8_p, input ADCA_8_n, input ADCA_6_p, input ADCA_6_n, input ADCA_4_p, input ADCA_4_n, input ADCA_2_p, input ADCA_2_n, input ADCA_0_p, input ADCA_0_n, input ADCB_12_p, input ADCB_12_n, input ADCB_10_p, input ADCB_10_n, input ADCB_8_p, input ADCB_8_n, input ADCB_6_p, input ADCB_6_n, input ADCB_4_p, input ADCB_4_n, input ADCB_2_p, input ADCB_2_n, input ADCB_0_p, input ADCB_0_n, // DAC output reg [15:0] DACA, output reg [15:0] DACB, input DAC_LOCK, // unused for now // DB IO Pins inout [15:0] io_tx, inout [15:0] io_rx, // Misc, debug output [5:1] leds, // LED4 is shared w/INIT_B input FPGA_RESET, output [1:0] debug_clk, output [31:0] debug, output [3:1] TXD, input [3:1] RXD, // UARTs //input [3:0] dipsw, // Forgot DIP Switches... // Clock Gen Control output [1:0] clk_en, output [1:0] clk_sel, input CLK_FUNC, // FIXME is an input to control the 9510 input clk_status, inout SCL, inout SDA, // I2C // PPS input PPS_IN, input PPS2_IN, // SPI output SEN_CLK, output SCLK_CLK, output MOSI_CLK, input MISO_CLK, output SEN_DAC, output SCLK_DAC, output MOSI_DAC, input MISO_DAC, output SEN_ADC, output SCLK_ADC, output MOSI_ADC, output SEN_TX_DB, output SCLK_TX_DB, output MOSI_TX_DB, input MISO_TX_DB, output SEN_TX_DAC, output SCLK_TX_DAC, output MOSI_TX_DAC, output SEN_TX_ADC, output SCLK_TX_ADC, output MOSI_TX_ADC, input MISO_TX_ADC, output SEN_RX_DB, output SCLK_RX_DB, output MOSI_RX_DB, input MISO_RX_DB, output SEN_RX_DAC, output SCLK_RX_DAC, output MOSI_RX_DAC, output SEN_RX_ADC, output SCLK_RX_ADC, output MOSI_RX_ADC, input MISO_RX_ADC, // GigE PHY input CLK_TO_MAC, output reg [7:0] GMII_TXD, output reg GMII_TX_EN, output reg GMII_TX_ER, output GMII_GTX_CLK, input GMII_TX_CLK, // 100mbps clk input GMII_RX_CLK, input [7:0] GMII_RXD, input GMII_RX_DV, input GMII_RX_ER, input GMII_COL, input GMII_CRS, input PHY_INTn, // open drain inout MDIO, output MDC, output PHY_RESETn, output ETH_LED, // input POR, // Expansion input exp_time_in_p, input exp_time_in_n, // Diff output exp_time_out_p, output exp_time_out_n, // Diff input exp_user_in_p, input exp_user_in_n, // Diff output exp_user_out_p, output exp_user_out_n, // Diff // SERDES output ser_enable, output ser_prbsen, output ser_loopen, output ser_rx_en, output ser_tx_clk, output reg [15:0] ser_t, output reg ser_tklsb, output reg ser_tkmsb, input ser_rx_clk, input [15:0] ser_r, input ser_rklsb, input ser_rkmsb, // SRAM inout [35:0] RAM_D, output [20:0] RAM_A, output [3:0] RAM_BWn, output RAM_ZZ, output RAM_LDn, output RAM_OEn, output RAM_WEn, output RAM_CENn, output RAM_CLK, // SPI Flash output flash_cs, output flash_clk, output flash_mosi, input flash_miso ); wire CLK_TO_MAC_int, CLK_TO_MAC_int2; IBUFG phyclk (.O(CLK_TO_MAC_int), .I(CLK_TO_MAC)); BUFG phyclk2 (.O(CLK_TO_MAC_int2), .I(CLK_TO_MAC_int)); // FPGA-specific pins connections wire clk_fpga, dsp_clk, clk_div, dcm_out, wb_clk, clock_ready; IBUFGDS clk_fpga_pin (.O(clk_fpga),.I(CLK_FPGA_P),.IB(CLK_FPGA_N)); defparam clk_fpga_pin.IOSTANDARD = "LVPECL_25"; wire exp_time_in; IBUFDS exp_time_in_pin (.O(exp_time_in),.I(exp_time_in_p),.IB(exp_time_in_n)); defparam exp_time_in_pin.IOSTANDARD = "LVDS_25"; wire exp_time_out; OBUFDS exp_time_out_pin (.O(exp_time_out_p),.OB(exp_time_out_n),.I(exp_time_out)); defparam exp_time_out_pin.IOSTANDARD = "LVDS_25"; wire exp_user_in; IBUFDS exp_user_in_pin (.O(exp_user_in),.I(exp_user_in_p),.IB(exp_user_in_n)); defparam exp_user_in_pin.IOSTANDARD = "LVDS_25"; wire exp_user_out; OBUFDS exp_user_out_pin (.O(exp_user_out_p),.OB(exp_user_out_n),.I(exp_user_out)); defparam exp_user_out_pin.IOSTANDARD = "LVDS_25"; reg [5:0] clock_ready_d; always @(posedge clk_fpga) clock_ready_d[5:0] <= {clock_ready_d[4:0],clock_ready}; wire dcm_rst = ~&clock_ready_d & |clock_ready_d; // ADC A is inverted on the schematic to facilitate a clean layout // We account for that here by inverting it `ifdef LVDS wire [13:0] adc_a, adc_a_inv, adc_b; capture_ddrlvds #(.WIDTH(14)) capture_ddrlvds (.clk(dsp_clk), .ssclk_p(ADC_clkout_p), .ssclk_n(ADC_clkout_n), .in_p({{ADCA_12_p, ADCA_10_p, ADCA_8_p, ADCA_6_p, ADCA_4_p, ADCA_2_p, ADCA_0_p}, {ADCB_12_p, ADCB_10_p, ADCB_8_p, ADCB_6_p, ADCB_4_p, ADCB_2_p, ADCB_0_p}}), .in_n({{ADCA_12_n, ADCA_10_n, ADCA_8_n, ADCA_6_n, ADCA_4_n, ADCA_2_n, ADCA_0_n}, {ADCB_12_n, ADCB_10_n, ADCB_8_n, ADCB_6_n, ADCB_4_n, ADCB_2_n, ADCB_0_n}}), .out({adc_a_inv,adc_b})); assign adc_a = ~adc_a_inv; `else reg [13:0] adc_a, adc_b, adc_a_pre, adc_b_pre; always @(posedge dsp_clk) begin adc_a_pre <= {ADCA_12_p,ADCA_12_n, ADCA_10_p,ADCA_10_n, ADCA_8_p,ADCA_8_n, ADCA_6_p,ADCA_6_n, ADCA_4_p,ADCA_4_n, ADCA_2_p,ADCA_2_n, ADCA_0_p,ADCA_0_n }; adc_b_pre <= {ADCB_12_p,ADCB_12_n, ADCB_10_p,ADCB_10_n, ADCB_8_p,ADCB_8_n, ADCB_6_p,ADCB_6_n, ADCB_4_p,ADCB_4_n, ADCB_2_p,ADCB_2_n, ADCB_0_p,ADCB_0_n }; adc_a <= ~adc_a_pre; //Note: A must be inverted, but not B adc_b <= adc_b_pre; end `endif // !`ifdef LVDS // Handle Clocks DCM DCM_INST (.CLKFB(dsp_clk), .CLKIN(clk_fpga), .DSSEN(0), .PSCLK(0), .PSEN(0), .PSINCDEC(0), .RST(dcm_rst), .CLKDV(clk_div), .CLKFX(), .CLKFX180(), .CLK0(dcm_out), .CLK2X(), .CLK2X180(), .CLK90(), .CLK180(), .CLK270(clk270_100), .LOCKED(LOCKED_OUT), .PSDONE(), .STATUS()); defparam DCM_INST.CLK_FEEDBACK = "1X"; defparam DCM_INST.CLKDV_DIVIDE = 2.0; defparam DCM_INST.CLKFX_DIVIDE = 1; defparam DCM_INST.CLKFX_MULTIPLY = 4; defparam DCM_INST.CLKIN_DIVIDE_BY_2 = "FALSE"; defparam DCM_INST.CLKIN_PERIOD = 10.000; defparam DCM_INST.CLKOUT_PHASE_SHIFT = "NONE"; defparam DCM_INST.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS"; defparam DCM_INST.DFS_FREQUENCY_MODE = "LOW"; defparam DCM_INST.DLL_FREQUENCY_MODE = "LOW"; defparam DCM_INST.DUTY_CYCLE_CORRECTION = "TRUE"; defparam DCM_INST.FACTORY_JF = 16'h8080; defparam DCM_INST.PHASE_SHIFT = 0; defparam DCM_INST.STARTUP_WAIT = "FALSE"; BUFG dspclk_BUFG (.I(dcm_out), .O(dsp_clk)); BUFG wbclk_BUFG (.I(clk_div), .O(wb_clk)); // Create clock for external SRAM thats -90degree phase to DSPCLK (i.e) 2nS earlier at 100MHz. BUFG clk270_100_buf_i1 (.I(clk270_100), .O(clk270_100_buf)); OFDDRRSE RAM_CLK_i1 (.Q(RAM_CLK), .C0(clk270_100_buf), .C1(~clk270_100_buf), .CE(1'b1), .D0(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0)); // I2C -- Don't use external transistors for open drain, the FPGA implements this IOBUF scl_pin(.O(scl_pad_i), .IO(SCL), .I(scl_pad_o), .T(scl_pad_oen_o)); IOBUF sda_pin(.O(sda_pad_i), .IO(SDA), .I(sda_pad_o), .T(sda_pad_oen_o)); // LEDs are active low outputs wire [5:0] leds_int; assign {ETH_LED,leds} = {6'b011111 ^ leds_int}; // drive low to turn on leds // SPI wire miso, mosi, sclk; assign {SCLK_CLK,MOSI_CLK} = ~SEN_CLK ? {sclk,mosi} : 2'B0; assign {SCLK_DAC,MOSI_DAC} = ~SEN_DAC ? {sclk,mosi} : 2'B0; assign {SCLK_ADC,MOSI_ADC} = ~SEN_ADC ? {sclk,mosi} : 2'B0; assign {SCLK_TX_DB,MOSI_TX_DB} = ~SEN_TX_DB ? {sclk,mosi} : 2'B0; assign {SCLK_TX_DAC,MOSI_TX_DAC} = ~SEN_TX_DAC ? {sclk,mosi} : 2'B0; assign {SCLK_TX_ADC,MOSI_TX_ADC} = ~SEN_TX_ADC ? {sclk,mosi} : 2'B0; assign {SCLK_RX_DB,MOSI_RX_DB} = ~SEN_RX_DB ? {sclk,mosi} : 2'B0; assign {SCLK_RX_DAC,MOSI_RX_DAC} = ~SEN_RX_DAC ? {sclk,mosi} : 2'B0; assign {SCLK_RX_ADC,MOSI_RX_ADC} = ~SEN_RX_ADC ? {sclk,mosi} : 2'B0; assign miso = (~SEN_CLK & MISO_CLK) | (~SEN_DAC & MISO_DAC) | (~SEN_TX_DB & MISO_TX_DB) | (~SEN_TX_ADC & MISO_TX_ADC) | (~SEN_RX_DB & MISO_RX_DB) | (~SEN_RX_ADC & MISO_RX_ADC); wire GMII_TX_EN_unreg, GMII_TX_ER_unreg; wire [7:0] GMII_TXD_unreg; wire GMII_GTX_CLK_int; always @(posedge GMII_GTX_CLK_int) begin GMII_TX_EN <= GMII_TX_EN_unreg; GMII_TX_ER <= GMII_TX_ER_unreg; GMII_TXD <= GMII_TXD_unreg; end OFDDRRSE OFDDRRSE_gmii_inst (.Q(GMII_GTX_CLK), // Data output (connect directly to top-level port) .C0(GMII_GTX_CLK_int), // 0 degree clock input .C1(~GMII_GTX_CLK_int), // 180 degree clock input .CE(1), // Clock enable input .D0(0), // Posedge data input .D1(1), // Negedge data input .R(0), // Synchronous reset input .S(0) // Synchronous preset input ); wire ser_tklsb_unreg, ser_tkmsb_unreg; wire [15:0] ser_t_unreg; wire ser_tx_clk_int; always @(posedge ser_tx_clk_int) begin ser_tklsb <= ser_tklsb_unreg; ser_tkmsb <= ser_tkmsb_unreg; ser_t <= ser_t_unreg; end assign ser_tx_clk = clk_fpga; reg [15:0] ser_r_int; reg ser_rklsb_int, ser_rkmsb_int; always @(posedge ser_rx_clk) begin ser_r_int <= ser_r; ser_rklsb_int <= ser_rklsb; ser_rkmsb_int <= ser_rkmsb; end /* OFDDRRSE OFDDRRSE_serdes_inst (.Q(ser_tx_clk), // Data output (connect directly to top-level port) .C0(ser_tx_clk_int), // 0 degree clock input .C1(~ser_tx_clk_int), // 180 degree clock input .CE(1), // Clock enable input .D0(0), // Posedge data input .D1(1), // Negedge data input .R(0), // Synchronous reset input .S(0) // Synchronous preset input ); */ // // Instantiate IO for Bidirectional bus to SRAM // wire [35:0] RAM_D_pi; wire [35:0] RAM_D_po; wire RAM_D_poe; genvar i; generate for (i=0;i<36;i=i+1) begin : gen_RAM_D_IO IOBUF #( .DRIVE(12), .IOSTANDARD("LVCMOS25"), .SLEW("FAST") ) RAM_D_i ( .O(RAM_D_pi[i]), .I(RAM_D_po[i]), .IO(RAM_D[i]), .T(RAM_D_poe) ); end // block: gen_RAM_D_IO endgenerate wire [15:0] dac_a_int, dac_b_int; // DAC A and B are swapped in schematic to facilitate clean layout // DAC A is also inverted in schematic to facilitate clean layout always @(negedge dsp_clk) DACA <= ~dac_b_int; always @(negedge dsp_clk) DACB <= dac_a_int; wire pps; assign pps = PPS_IN ^ PPS2_IN; u2plus_core u2p_c(.dsp_clk (dsp_clk), .wb_clk (wb_clk), .clock_ready (clock_ready), .clk_to_mac (CLK_TO_MAC_int2), .pps_in (pps), .leds (leds_int), .debug (debug[31:0]), .debug_clk (debug_clk[1:0]), .exp_time_in (exp_time_in), .exp_time_out (exp_time_out), .GMII_COL (GMII_COL), .GMII_CRS (GMII_CRS), .GMII_TXD (GMII_TXD_unreg[7:0]), .GMII_TX_EN (GMII_TX_EN_unreg), .GMII_TX_ER (GMII_TX_ER_unreg), .GMII_GTX_CLK (GMII_GTX_CLK_int), .GMII_TX_CLK (GMII_TX_CLK), .GMII_RXD (GMII_RXD[7:0]), .GMII_RX_CLK (GMII_RX_CLK), .GMII_RX_DV (GMII_RX_DV), .GMII_RX_ER (GMII_RX_ER), .MDIO (MDIO), .MDC (MDC), .PHY_INTn (PHY_INTn), .PHY_RESETn (PHY_RESETn), .ser_enable (ser_enable), .ser_prbsen (ser_prbsen), .ser_loopen (ser_loopen), .ser_rx_en (ser_rx_en), .ser_tx_clk (ser_tx_clk_int), .ser_t (ser_t_unreg[15:0]), .ser_tklsb (ser_tklsb_unreg), .ser_tkmsb (ser_tkmsb_unreg), .ser_rx_clk (ser_rx_clk), .ser_r (ser_r_int[15:0]), .ser_rklsb (ser_rklsb_int), .ser_rkmsb (ser_rkmsb_int), .adc_a (adc_a[13:0]), .adc_ovf_a (1'b0), .adc_on_a (), .adc_oe_a (), .adc_b (adc_b[13:0]), .adc_ovf_b (1'b0), .adc_on_b (), .adc_oe_b (), .dac_a (dac_a_int[15:0]), .dac_b (dac_b_int[15:0]), .scl_pad_i (scl_pad_i), .scl_pad_o (scl_pad_o), .scl_pad_oen_o (scl_pad_oen_o), .sda_pad_i (sda_pad_i), .sda_pad_o (sda_pad_o), .sda_pad_oen_o (sda_pad_oen_o), .clk_en (clk_en[1:0]), .clk_sel (clk_sel[1:0]), .clk_func (clk_func), .clk_status (clk_status), .sclk (sclk), .mosi (mosi), .miso (miso), .sen_clk (SEN_CLK), .sen_dac (SEN_DAC), .sen_adc (SEN_ADC), .sen_tx_db (SEN_TX_DB), .sen_tx_adc (SEN_TX_ADC), .sen_tx_dac (SEN_TX_DAC), .sen_rx_db (SEN_RX_DB), .sen_rx_adc (SEN_RX_ADC), .sen_rx_dac (SEN_RX_DAC), .io_tx (io_tx[15:0]), .io_rx (io_rx[15:0]), .RAM_D_po (RAM_D_po), .RAM_D_pi (RAM_D_pi), .RAM_D_poe (RAM_D_poe), .RAM_A (RAM_A), .RAM_CE1n (RAM_CE1n), .RAM_CENn (RAM_CENn), .RAM_WEn (RAM_WEn), .RAM_OEn (RAM_OEn), .RAM_LDn (RAM_LDn), .uart_tx_o (TXD[3:1]), .uart_rx_i ({1'b1,RXD[3:1]}), .uart_baud_o (), .sim_mode (1'b0), .clock_divider (2), .button (FPGA_RESET), .spiflash_cs (flash_cs), .spiflash_clk (flash_clk), .spiflash_miso (flash_miso), .spiflash_mosi (flash_mosi) ); // Drive low so that RAM does not sleep. assign RAM_ZZ = 0; // Byte Writes are qualified by the global write enable // Always do 36bit operations to extram. assign RAM_BWn = 4'b0000; endmodule // u2plus