// SERDES Interface // LS-Byte is sent first, MS-Byte is second // Invalid K Codes // K0.0 000-00000 Error detected // K31.7 111-11111 Loss of input signal // Valid K Codes // K28.0 000-11100 // K28.1 001-11100 Alternate COMMA? // K28.2 010-11100 // K28.3 011-11100 // K28.4 100-11100 // K28.5 101-11100 Standard COMMA? // K28.6 110-11100 // K28.7 111-11100 Bad COMMA? // K23.7 111-10111 // K27.7 111-11011 // K29.7 111-11101 // K30.7 111-11110 module serdes_tx #(parameter FIFOSIZE = 9) (input clk, input rst, // TX HW Interface output ser_tx_clk, output reg [15:0] ser_t, output reg ser_tklsb, output reg ser_tkmsb, // TX Stream Interface input [31:0] rd_dat_i, input [3:0] rd_flags_i, output rd_ready_o, input rd_ready_i, // Flow control interface input inhibit_tx, input send_xon, input send_xoff, output sent, // FIFO Levels output [15:0] fifo_occupied, output fifo_full, output fifo_empty, // DEBUG output [31:0] debug ); localparam K_COMMA = 8'b101_11100; // 0xBC K28.5 localparam K_IDLE = 8'b001_11100; // 0x3C K28.1 localparam K_PKT_START = 8'b110_11100; // 0xDC K28.6 localparam K_PKT_END = 8'b100_11100; // 0x9C K28.4 localparam K_XON = 8'b010_11100; // 0x5C K28.2 localparam K_XOFF = 8'b011_11100; // 0x7C K28.3 localparam K_LOS = 8'b111_11111; // 0xFF K31.7 localparam K_ERROR = 8'b000_00000; // 0x00 K00.0 localparam D_56 = 8'b110_00101; // 0xC5 D05.6 assign ser_tx_clk = clk; localparam IDLE = 3'd0; localparam RUN1 = 3'd1; localparam RUN2 = 3'd2; localparam DONE = 3'd3; localparam SENDCRC = 3'd4; localparam WAIT = 3'd5; reg [2:0] state; reg [15:0] CRC; wire [15:0] nextCRC; reg [3:0] wait_count; // Internal FIFO, size 9 is 2K, size 10 is 4K bytes wire sop_o, eop_o; wire [31:0] data_o; wire rd_sop_i = rd_flags_i[0]; wire rd_eop_i = rd_flags_i[1]; wire [1:0] rd_occ_i = rd_flags_i[3:2]; // Unused wire have_data, empty, read; fifo_cascade #(.WIDTH(34),.SIZE(FIFOSIZE)) serdes_tx_fifo (.clk(clk),.reset(rst),.clear(0), .datain({rd_sop_i,rd_eop_i,rd_dat_i}), .src_rdy_i(rd_ready_i), .dst_rdy_o(rd_ready_o), .dataout({sop_o,eop_o,data_o}), .dst_rdy_i(read), .src_rdy_o(have_data), .space(), .occupied(fifo_occupied) ); assign fifo_full = ~rd_ready_o; assign empty = ~have_data; assign fifo_empty = empty; // FIXME Implement flow control reg [15:0] second_word; reg [33:0] pipeline; assign read = (~send_xon & ~send_xoff & (state==RUN2)) | ((state==IDLE) & ~empty & ~sop_o); assign sent = send_xon | send_xoff; // 2nd half of above probably not necessary. Just in case we get junk between packets always @(posedge clk) if(rst) begin state <= IDLE; wait_count <= 0; {ser_tkmsb,ser_tklsb,ser_t} <= 18'd0; //{2'b10,K_COMMA,K_COMMA}; // make tkmsb and tklsb different so they can go in IOFFs end else if(send_xon) {ser_tkmsb,ser_tklsb,ser_t} <= {2'b11,K_XON,K_XON}; else if(send_xoff) {ser_tkmsb,ser_tklsb,ser_t} <= {2'b11,K_XOFF,K_XOFF}; else case(state) IDLE : begin if(sop_o & ~empty & ~inhibit_tx) begin {ser_tkmsb,ser_tklsb,ser_t} <= {2'b11,K_PKT_START,K_PKT_START}; state <= RUN1; end else {ser_tkmsb,ser_tklsb,ser_t} <= {2'b10,K_COMMA,D_56}; end RUN1 : begin if(empty | inhibit_tx) {ser_tkmsb,ser_tklsb,ser_t} <= {2'b10,K_COMMA,D_56}; else begin {ser_tkmsb,ser_tklsb,ser_t} <= {2'b00,data_o[15:0]}; state <= RUN2; end end RUN2 : begin {ser_tkmsb,ser_tklsb,ser_t} <= {2'b00,data_o[31:16]}; if(eop_o) state <= DONE; else state <= RUN1; end DONE : begin {ser_tkmsb,ser_tklsb,ser_t} <= {2'b11,K_PKT_END,K_PKT_END}; state <= SENDCRC; end SENDCRC : begin {ser_tkmsb,ser_tklsb,ser_t} <= {2'b00,CRC}; state <= WAIT; wait_count <= 4'd15; end WAIT : begin {ser_tkmsb,ser_tklsb,ser_t} <= {2'b10,K_COMMA,D_56}; if(wait_count == 0) state <= IDLE; else wait_count <= wait_count - 1; end default state <= IDLE; endcase // case(state) always @(posedge clk) if(rst) CRC <= 16'hFFFF; else if(state == IDLE) CRC <= 16'hFFFF; else if( (~empty & ~inhibit_tx & (state==RUN1)) || (state==RUN2) ) CRC <= nextCRC; CRC16_D16 crc_blk( (state==RUN1) ? data_o[15:0] : data_o[31:16], CRC, nextCRC); assign debug = { 28'd0, state[2:0] }; endmodule // serdes_tx