// // Copyright 2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Short halfband decimator (intended to be followed by another stage) // Implements impulse responses of the form [A 0 B 0.5 B 0 A] // // These taps designed by halfgen4 from ldoolittle: // 2 * 131072 * halfgen4(.75/8,2) module small_hb_int #(parameter WIDTH=18) (input clk, input rst, input bypass, input stb_in, input [WIDTH-1:0] data_in, input [7:0] output_rate, input stb_out, output reg [WIDTH-1:0] data_out); reg phase; reg [WIDTH-1:0] d1, d2, d3, d4, d5, d6; localparam MWIDTH = 36; wire [MWIDTH-1:0] prod; reg [6:0] stbin_d; always @(posedge clk) stbin_d <= {stbin_d[5:0],stb_in}; always @(posedge clk) if(stb_in) begin d1 <= data_in; d2 <= d1; d3 <= d2; d4 <= d3; d5 <= d4; d6 <= d5; end wire [WIDTH-1:0] sum_outer, sum_inner; add2_and_round_reg #(.WIDTH(WIDTH)) add_outer (.clk(clk),.in1(d1),.in2(d4),.sum(sum_outer)); add2_and_round_reg #(.WIDTH(WIDTH)) add_inner (.clk(clk),.in1(d2),.in2(d3),.sum(sum_inner)); wire [17:0] coeff_outer = -10690; wire [17:0] coeff_inner = 75809; MULT18X18S mult(.C(clk), .CE(1), .R(rst), .P(prod), .A(stbin_d[1] ? coeff_outer : coeff_inner), .B(stbin_d[1] ? sum_outer : sum_inner) ); wire [MWIDTH:0] accum; acc #(.IWIDTH(MWIDTH),.OWIDTH(MWIDTH+1)) acc (.clk(clk),.clear(stbin_d[2]),.acc(|stbin_d[3:2]),.in(prod),.out(accum)); wire [WIDTH+2:0] accum_rnd; round_reg #(.bits_in(MWIDTH+1),.bits_out(WIDTH+3)) final_round (.clk(clk),.in(accum),.out(accum_rnd)); wire [WIDTH-1:0] clipped; clip_reg #(.bits_in(WIDTH+3),.bits_out(WIDTH)) final_clip (.clk(clk),.in(accum_rnd),.strobe_in(1'b1), .out(clipped)); reg [WIDTH-1:0] saved, saved_d3; always @(posedge clk) if(stbin_d[6]) saved <= clipped; always @(posedge clk) if(stbin_d[3]) saved_d3 <= d3; always @(posedge clk) if(bypass) data_out <= data_in; else if(stb_in & stb_out) case(output_rate) 1 : data_out <= d6; 2 : data_out <= d4; 3, 4, 5, 6, 7 : data_out <= d3; default : data_out <= d2; endcase // case(output_rate) else if(stb_out) data_out <= saved; endmodule // small_hb_int