module rx_dcoffset #(parameter WIDTH=14, parameter ADDR=8'd0) (input clk, input rst, input set_stb, input [7:0] set_addr, input [31:0] set_data, input signed [WIDTH-1:0] adc_in, output signed [WIDTH-1:0] adc_out); // Because of some extra delays to make timing easier, the transfer function is: // (z-1)/(z^2-z-alpha) where alpha is 1/2^n wire set_now = set_stb & (ADDR == set_addr); reg fixed; // uses fixed offset wire signed [WIDTH-1:0] fixed_dco; reg signed [31:0] integrator; always @(posedge clk) if(rst) begin fixed <= 0; integrator <= 32'd0; end else if(set_now) begin integrator <= {set_data[WIDTH-1:0],{(32-WIDTH){1'b0}}}; fixed <= set_data[31]; end else if(~fixed) integrator <= integrator + adc_out; wire [WIDTH:0] scaled_integrator; round #(.bits_in(33),.bits_out(15)) round (.in({integrator[31],integrator}),.out(scaled_integrator)); wire [WIDTH:0] adc_out_int = {adc_in[WIDTH-1],adc_in} - scaled_integrator; clip_reg #(.bits_in(WIDTH+1),.bits_out(WIDTH)) clip_adc (.clk(clk),.in(adc_out_int),.out(adc_out)); endmodule // rx_dcoffset