// $Header: /devl/xcs/repo/env/Databases/CAEInterfaces/verunilibs/data/rainier/PLL_ADV.v,v 1.43.4.1 2007/12/07 01:25:16 yanx Exp $ /////////////////////////////////////////////////////////////////////////////// // Copyright (c) 1995/2004 Xilinx, Inc. // All Right Reserved. /////////////////////////////////////////////////////////////////////////////// // ____ ____ // / /\/ / // /___/ \ / Vendor : Xilinx // \ \ \/ Version : 10.1 // \ \ Description : Xilinx Function Simulation Library Component // / / Phase Lock Loop Clock // /___/ /\ Filename : PLL_ADV.v // \ \ / \ Timestamp : Thu Mar 25 16:44:07 PST 2004 // \___\/\___\ // // Revision: // 03/15/05 - Initial version. // 10/14/05 - Add REL pin. // 11/07/05 - Add PMCD. // 12/02/05 - Change parameter default values. Add DRP read/write. // 12/22/05 - CR 222805 222809 fix. // 01/03/06 - Change RST_DEASSER_CLK value to CLKIN1 and CLKFB (BT#735). // 01/11/06 - Remove GSR from reset logic of PLL (CR 223099). // 01/26/06 - Add reset to locked logic (CR224502). // 02/16/06 - Support -360 6o +360 phase shifting (CR 225765) // 03/10/06 - Add parameter type declaration (CR 226003) // 03/17/06 - Using assign/deassign to reset pll_locked_tmp2 and reduce // lock time by MD (CR 224502). // 04/19/06 - Change i to i1 and i2 in clkvco_lk. (CR230260). // 07/17/06 - Remove i2 and first 4 clkvco_lk cycle generation (CR234931). // 08/23/06 - Use clkout_en_tmp to generate clkout_en0; Use block statement to // reset clock stop counter and flag. (CR422250) // 09/19/06 - md_product update (CR 424286). // 09/27/06 - Add error check for RESET_ON_LOSS_OF_LOCK (CR 425255). // 11/10/06 - Keep 3 digits for real in duty cycle check function. (CR 428703). // 01/12/07 - Add CLKOUT_DESKEW_ADJUST parameters (CR 432189). // 03/30/07 - Fix error message for CLKSEL change in RST=0 (CR 436927). // 04/09/07 - Enhance error message for RESET_ON_LOSS_OF_LOCK (CR 437405). // 04/10/07 - Using assign/deassign to reset signals with # delay (CR 437660). // 05/22/07 - Add setup check for REL (438781). // 06/04/07 - Add wire declaration to internal signal. // 06/8/07 - Generate clkfb_tst when GSR=0; // - Chang VCOCLK_FREQ_MAX and VCOCLK_FREQ_MIN to parameter for simprim (BT1485). // 06/18/07 - Improve error message for VCO (CR ). Initialize DRP mem (CR ). // - Add CLKFBIN pulse width check (BT1476). // 06/28/07 - Initial DRP memory (CR 434042), Error message improve (CR 438250). // 07/11/07 - change daddr_in to 5 bits (CR 443757). // 08/02/07 - Remove numbers from CLKOUT DESKEW_ADJUST check (CR443161). // 08/21/07 - Not check CLKIN period when PMCD mode set (445101). // Fix DUTY_CYCLE_MAX formula in case of divider larger than O_MAX_HT_LT (CR445945). // Add warning if phase shift over pll ability (63 vco) (CR446037). // 09/20/07 - Seperate fb_delay and delay_edge to handle 0 fb_delay (CR448938) // 10/23/07 - Add warnings to initial phase shift calculation (CR448965) // 11/01/07 - Remove zero check for CLKOUTx dly register bit15-8 (CR434042) // 12/06/07 - Add I/O buf to simprim (CR456124) // End Revision `timescale 1 ps / 1 ps `define PLL_LOCK_TIME 7 module PLL_ADV ( CLKFBDCM, CLKFBOUT, CLKOUT0, CLKOUT1, CLKOUT2, CLKOUT3, CLKOUT4, CLKOUT5, CLKOUTDCM0, CLKOUTDCM1, CLKOUTDCM2, CLKOUTDCM3, CLKOUTDCM4, CLKOUTDCM5, DO, DRDY, LOCKED, CLKFBIN, CLKIN1, CLKIN2, CLKINSEL, DADDR, DCLK, DEN, DI, DWE, REL, RST ); parameter BANDWIDTH = "OPTIMIZED"; parameter CLKFBOUT_DESKEW_ADJUST = "NONE"; parameter CLKOUT0_DESKEW_ADJUST = "NONE"; parameter CLKOUT1_DESKEW_ADJUST = "NONE"; parameter CLKOUT2_DESKEW_ADJUST = "NONE"; parameter CLKOUT3_DESKEW_ADJUST = "NONE"; parameter CLKOUT4_DESKEW_ADJUST = "NONE"; parameter CLKOUT5_DESKEW_ADJUST = "NONE"; parameter integer CLKFBOUT_MULT = 1; parameter real CLKFBOUT_PHASE = 0.0; parameter real CLKIN1_PERIOD = 0.000; parameter real CLKIN2_PERIOD = 0.000; parameter integer CLKOUT0_DIVIDE = 1; parameter real CLKOUT0_DUTY_CYCLE = 0.5; parameter real CLKOUT0_PHASE = 0.0; parameter integer CLKOUT1_DIVIDE = 1; parameter real CLKOUT1_DUTY_CYCLE = 0.5; parameter real CLKOUT1_PHASE = 0.0; parameter integer CLKOUT2_DIVIDE = 1; parameter real CLKOUT2_DUTY_CYCLE = 0.5; parameter real CLKOUT2_PHASE = 0.0; parameter integer CLKOUT3_DIVIDE = 1; parameter real CLKOUT3_DUTY_CYCLE = 0.5; parameter real CLKOUT3_PHASE = 0.0; parameter integer CLKOUT4_DIVIDE = 1; parameter real CLKOUT4_DUTY_CYCLE = 0.5; parameter real CLKOUT4_PHASE = 0.0; parameter integer CLKOUT5_DIVIDE = 1; parameter real CLKOUT5_DUTY_CYCLE = 0.5; parameter real CLKOUT5_PHASE = 0.0; parameter COMPENSATION = "SYSTEM_SYNCHRONOUS"; parameter integer DIVCLK_DIVIDE = 1; parameter EN_REL = "FALSE"; parameter PLL_PMCD_MODE = "FALSE"; parameter real REF_JITTER = 0.100; parameter RESET_ON_LOSS_OF_LOCK = "FALSE"; parameter RST_DEASSERT_CLK = "CLKIN1"; localparam VCOCLK_FREQ_MAX = 1100; localparam VCOCLK_FREQ_MIN = 400; output CLKFBDCM; output CLKFBOUT; output CLKOUT0; output CLKOUT1; output CLKOUT2; output CLKOUT3; output CLKOUT4; output CLKOUT5; output CLKOUTDCM0; output CLKOUTDCM1; output CLKOUTDCM2; output CLKOUTDCM3; output CLKOUTDCM4; output CLKOUTDCM5; output DRDY; output LOCKED; output [15:0] DO; input CLKFBIN; input CLKIN1; input CLKIN2; input CLKINSEL; input DCLK; input DEN; input DWE; input REL; input RST; input [15:0] DI; input [4:0] DADDR; localparam VCOCLK_FREQ_TARGET = 800; localparam CLKIN_FREQ_MAX = 1000; localparam CLKIN_FREQ_MIN = 1; //need check speed file, current is TBD localparam CLKPFD_FREQ_MAX = 550; localparam CLKPFD_FREQ_MIN = 1; //need check speed file, current is TBD localparam M_MIN = 1; localparam M_MAX = 74; localparam D_MIN = 1; localparam D_MAX = 52; localparam O_MIN = 1; localparam O_MAX = 128; localparam O_MAX_HT_LT = 64; localparam REF_CLK_JITTER_MAX = 350; localparam REF_CLK_JITTER_SCALE = 0.1; localparam MAX_FEEDBACK_DELAY = 10.0; localparam MAX_FEEDBACK_DELAY_SCALE = 1.0; tri0 GSR = glbl.GSR; reg [4:0] daddr_lat; reg valid_daddr; reg drdy_out; reg drp_lock, drp_lock1; reg [15:0] dr_sram [31:0]; reg [160:0] tmp_string; wire CLKFBIN, CLKIN1, CLKIN2, CLKINSEL ; wire rst_in, RST, orig_rst_in ; wire locked_out; wire clkvco_lk_rst; reg clk0_out, clk1_out, clk2_out, clk3_out, clk4_out, clk5_out; reg clkfb_out, clkfbm1_out; reg clkout_en, clkout_en1, clkout_en0, clkout_en0_tmp; integer clkout_cnt, clkin_cnt, clkin_lock_cnt; integer clkout_en_time, locked_en_time, lock_cnt_max; reg clkvco_lk, clkvco_free, clkvco; reg fbclk_tmp; reg rst_in1, rst_unlock, rst_on_loss; time rst_edge, rst_ht; reg fb_delay_found, fb_delay_found_tmp; reg clkfb_tst; real fb_delay_max; time fb_delay, clkvco_delay, val_tmp, dly_tmp, fbm1_comp_delay; time clkin_edge, delay_edge; real period_clkin; integer clkin_period [4:0]; integer period_vco, period_vco_half, period_vco_max, period_vco_min; integer period_vco1, period_vco2, period_vco3, period_vco4; integer period_vco5, period_vco6, period_vco7; integer period_vco_target, period_vco_target_half; integer period_fb, period_avg; real clkvco_freq_init_chk, clkfbm1pm_rl; real tmp_real; integer i, j, i1, i2; integer md_product, md_product_dbl, clkin_stop_max, clkfb_stop_max; time pll_locked_delay, clkin_dly_t, clkfb_dly_t; reg clkpll_dly, clkfbin_dly; wire pll_unlock; reg pll_locked_tmp1, pll_locked_tmp2; reg lock_period; reg pll_locked_tm, unlock_recover; reg clkin_stopped_p, clkin_stopped_n; reg clkfb_stopped_p, clkfb_stopped_n; wire clkin_stopped, clkfb_stopped; reg clkpll_jitter_unlock; integer clkstop_cnt_p, clkstop_cnt_n, clkfbstop_cnt_p, clkfbstop_cnt_n; integer clkin_jit, REF_CLK_JITTER_MAX_tmp; wire REL, DWE, DEN, DCLK, rel_o_mux_clk_tmp, clka1_in, clkb1_in; wire init_trig, clkpll_tmp, clkpll, clk0in, clk1in, clk2in, clk3in, clk4in, clk5in; wire clkfbm1in, clkfbm1ps_en; reg clkout0_out; reg clkout1_out; reg clkout2_out; reg clkout3_out; reg clkout4_out; reg clkout5_out; reg clka1_out, clkb1_out, clka1d2_out, clka1d4_out, clka1d8_out; reg clkdiv_rel_rst, qrel_o_reg1, qrel_o_reg2, qrel_o_reg3, rel_o_mux_sel; reg pmcd_mode; reg chk_ok; wire rel_rst_o, rel_o_mux_clk; wire clk0ps_en, clk1ps_en, clk2ps_en, clk3ps_en, clk4ps_en, clk5ps_en; reg [7:0] clkout_mux; reg [2:0] clk0pm_sel, clk1pm_sel, clk2pm_sel, clk3pm_sel, clk4pm_sel, clk5pm_sel; reg [2:0] clkfbm1pm_sel; reg clk0_edge, clk1_edge, clk2_edge, clk3_edge, clk4_edge, clk5_edge; reg clkfbm1_edge, clkind_edge; reg clk0_nocnt, clk1_nocnt, clk2_nocnt, clk3_nocnt, clk4_nocnt, clk5_nocnt; reg clkfbm1_nocnt, clkind_nocnt; reg clkind_edget, clkind_nocntt; reg [5:0] clk0_dly_cnt, clkout0_dly; reg [5:0] clk1_dly_cnt, clkout1_dly; reg [5:0] clk2_dly_cnt, clkout2_dly; reg [5:0] clk3_dly_cnt, clkout3_dly; reg [5:0] clk4_dly_cnt, clkout4_dly; reg [5:0] clk5_dly_cnt, clkout5_dly; reg [6:0] clk0_ht, clk0_lt; reg [6:0] clk1_ht, clk1_lt; reg [6:0] clk2_ht, clk2_lt; reg [6:0] clk3_ht, clk3_lt; reg [6:0] clk4_ht, clk4_lt; reg [6:0] clk5_ht, clk5_lt; reg [5:0] clkfbm1_dly_cnt, clkfbm1_dly; reg [6:0] clkfbm1_ht, clkfbm1_lt; reg [7:0] clkind_ht, clkind_lt; reg [7:0] clkind_htt, clkind_ltt; reg [7:0] clk0_ht1, clk0_cnt, clk0_div, clk0_div1; reg [7:0] clk1_ht1, clk1_cnt, clk1_div, clk1_div1; reg [7:0] clk2_ht1, clk2_cnt, clk2_div, clk2_div1; reg [7:0] clk3_ht1, clk3_cnt, clk3_div, clk3_div1; reg [7:0] clk4_ht1, clk4_cnt, clk4_div, clk4_div1; reg [7:0] clk5_ht1, clk5_cnt, clk5_div, clk5_div1; reg [7:0] clkfbm1_ht1, clkfbm1_cnt, clkfbm1_div, clkfbm1_div1; reg [7:0] clkind_div; reg [3:0] pll_cp, pll_res; reg [1:0] pll_lfhf; reg [1:0] pll_cpres = 2'b01; reg notifier; wire [15:0] do_out, di_in; wire clkin1_in, clkin2_in, clkfb_in, clkinsel_in, dwe_in, den_in, dclk_in; wire [4:0] daddr_in; wire rel_in, gsr_in, rst_input; assign #100 LOCKED = locked_out; assign #100 DRDY = drdy_out; assign #100 DO = do_out; assign clkin1_in = CLKIN1; assign clkin2_in = CLKIN2; assign clkfb_in = CLKFBIN; assign clkinsel_in = CLKINSEL; assign rst_input = RST; assign daddr_in = DADDR; assign di_in = DI; assign dwe_in = DWE; assign den_in = DEN; assign dclk_in = DCLK; assign rel_in = REL; initial begin #1; if ($realtime == 0) begin $display ("Simulator Resolution Error : Simulator resolution is set to a value greater than 1 ps."); $display ("In order to simulate the PLL_ADV, the simulator resolution must be set to 1ps or smaller."); $finish; end end initial begin case (COMPENSATION) "SYSTEM_SYNCHRONOUS" : ; "SOURCE_SYNCHRONOUS" : ; "INTERNAL" : ; "EXTERNAL" : ; "DCM2PLL" : ; "PLL2DCM" : ; default : begin $display("Attribute Syntax Error : The Attribute COMPENSATION on PLL_ADV instance %m is set to %s. Legal values for this attribute are SYSTEM_SYNCHRONOUS, SOURCE_SYNCHRONOUS, INTERNAL, EXTERNAL, DCM2PLL or PLL2DCM.", COMPENSATION); $finish; end endcase case (BANDWIDTH) "HIGH" : ; "LOW" : ; "OPTIMIZED" : ; default : begin $display("Attribute Syntax Error : The Attribute BANDWIDTH on PLL_ADV instance %m is set to %s. Legal values for this attribute are HIGH, LOW or OPTIMIZED.", BANDWIDTH); $finish; end endcase case (CLKOUT0_DESKEW_ADJUST) "NONE" : ; "PPC" : ; default : begin $display("Attribute Syntax Error : The Attribute CLKOUT0_DESKEW_ADJUST on PLL_ADV instance %m is set to %s. Legal values for this attribute are NONE or PPC.", CLKOUT0_DESKEW_ADJUST); $finish; end endcase case (CLKOUT1_DESKEW_ADJUST) "NONE" : ; "PPC" : ; default : begin $display("Attribute Syntax Error : The Attribute CLKOUT1_DESKEW_ADJUST on PLL_ADV instance %m is set to %s. Legal values for this attribute are NONE or PPC .", CLKOUT1_DESKEW_ADJUST); $finish; end endcase case (CLKOUT2_DESKEW_ADJUST) "NONE" : ; "PPC" : ; default : begin $display("Attribute Syntax Error : The Attribute CLKOUT2_DESKEW_ADJUST on PLL_ADV instance %m is set to %s. Legal values for this attribute are NONE or PPC.", CLKOUT2_DESKEW_ADJUST); $finish; end endcase case (CLKOUT3_DESKEW_ADJUST) "NONE" : ; "PPC" : ; default : begin $display("Attribute Syntax Error : The Attribute CLKOUT3_DESKEW_ADJUST on PLL_ADV instance %m is set to %s. Legal values for this attribute are NONE or PPC.", CLKOUT3_DESKEW_ADJUST); $finish; end endcase case (CLKOUT4_DESKEW_ADJUST) "NONE" : ; "PPC" : ; default : begin $display("Attribute Syntax Error : The Attribute CLKOUT4_DESKEW_ADJUST on PLL_ADV instance %m is set to %s. Legal values for this attribute are NONE or PPC.", CLKOUT4_DESKEW_ADJUST); $finish; end endcase case (CLKOUT5_DESKEW_ADJUST) "NONE" : ; "PPC" : ; default : begin $display("Attribute Syntax Error : The Attribute CLKOUT5_DESKEW_ADJUST on PLL_ADV instance %m is set to %s. Legal values for this attribute are NONE or PPC.", CLKOUT5_DESKEW_ADJUST); $finish; end endcase case (CLKFBOUT_DESKEW_ADJUST) "NONE" : ; "PPC" : ; default : begin $display("Attribute Syntax Error : The Attribute CLKFBOUT_DESKEW_ADJUST on PLL_ADV instance %m is set to %s. Legal values for this attribute are NONE or PPC.", CLKFBOUT_DESKEW_ADJUST); $finish; end endcase case (PLL_PMCD_MODE) "TRUE" : pmcd_mode = 1'b1; "FALSE" : pmcd_mode = 1'b0; default : begin $display("Attribute Syntax Error : The Attribute PLL_PMCD_MODE on PLL_ADV instance %m is set to %s. Legal values for this attribute are FALSE or TRUE.", PLL_PMCD_MODE); $finish; end endcase tmp_string = "CLKOUT0_DIVIDE"; chk_ok = para_int_pmcd_chk(CLKOUT0_DIVIDE, tmp_string, 1, 128, pmcd_mode, 8); tmp_string = "CLKOUT0_PHASE"; chk_ok = para_real_pmcd_chk(CLKOUT0_PHASE, tmp_string, -360.0, 360.0, pmcd_mode, 0.0); tmp_string = "CLKOUT0_DUTY_CYCLE"; chk_ok = para_real_pmcd_chk(CLKOUT0_DUTY_CYCLE, tmp_string, 0.0, 1.0, pmcd_mode, 0.5); tmp_string = "CLKOUT1_DIVIDE"; chk_ok = para_int_pmcd_chk(CLKOUT1_DIVIDE, tmp_string, 1, 128, pmcd_mode, 4); tmp_string = "CLKOUT1_PHASE"; chk_ok = para_real_pmcd_chk(CLKOUT1_PHASE, tmp_string, -360.0, 360.0, pmcd_mode, 0.0); tmp_string = "CLKOUT1_DUTY_CYCLE"; chk_ok = para_real_pmcd_chk(CLKOUT1_DUTY_CYCLE, tmp_string, 0.0, 1.0, pmcd_mode, 0.5); tmp_string = "CLKOUT2_DIVIDE"; chk_ok = para_int_pmcd_chk(CLKOUT2_DIVIDE, tmp_string, 1, 128, pmcd_mode, 2); tmp_string = "CLKOUT2_PHASE"; chk_ok = para_real_pmcd_chk(CLKOUT2_PHASE, tmp_string, -360.0, 360.0, pmcd_mode, 0.0); tmp_string = "CLKOUT2_DUTY_CYCLE"; chk_ok = para_real_pmcd_chk(CLKOUT2_DUTY_CYCLE, tmp_string, 0.0, 1.0, pmcd_mode, 0.5); tmp_string = "CLKOUT3_DIVIDE"; chk_ok = para_int_pmcd_chk(CLKOUT3_DIVIDE, tmp_string, 1, 128, pmcd_mode, 1); tmp_string = "CLKOUT3_PHASE"; chk_ok = para_real_pmcd_chk(CLKOUT3_PHASE, tmp_string, -360.0, 360.0, pmcd_mode, 0.0); tmp_string = "CLKOUT3_DUTY_CYCLE"; chk_ok = para_real_pmcd_chk(CLKOUT3_DUTY_CYCLE, tmp_string, 0.0, 1.0, pmcd_mode, 0.5); tmp_string = "CLKOUT4_DIVIDE"; chk_ok = para_int_range_chk(CLKOUT4_DIVIDE, tmp_string, 1, 128); tmp_string = "CLKOUT4_PHASE"; chk_ok = para_real_range_chk(CLKOUT4_PHASE, tmp_string, -360.0, 360.0); tmp_string = "CLKOUT4_DUTY_CYCLE"; chk_ok = para_real_range_chk(CLKOUT4_DUTY_CYCLE, tmp_string, 0.0, 1.0); tmp_string = "CLKOUT5_DIVIDE"; chk_ok = para_int_range_chk (CLKOUT5_DIVIDE, tmp_string, 1, 128); tmp_string = "CLKOUT5_PHASE"; chk_ok = para_real_range_chk(CLKOUT5_PHASE, tmp_string, -360.0, 360.0); tmp_string = "CLKOUT5_DUTY_CYCLE"; chk_ok = para_real_range_chk (CLKOUT5_DUTY_CYCLE, tmp_string, 0.0, 1.0); tmp_string = "CLKFBOUT_MULT"; chk_ok = para_int_pmcd_chk(CLKFBOUT_MULT, tmp_string, 1, 74, pmcd_mode, 1); tmp_string = "CLKFBOUT_PHASE"; chk_ok = para_real_pmcd_chk(CLKFBOUT_PHASE, tmp_string, -360.0, 360.0, pmcd_mode, 0.0); tmp_string = "DIVCLK_DIVIDE"; chk_ok = para_int_range_chk (DIVCLK_DIVIDE, tmp_string, 1, 52); tmp_string = "REF_JITTER"; chk_ok = para_real_range_chk (REF_JITTER, tmp_string, 0.0, 0.999); if (((CLKIN1_PERIOD < 1.0) || (CLKIN1_PERIOD > 52.630)) && (pmcd_mode == 0)) begin $display("Attribute Syntax Error : CLKIN1_PERIOD is not in range 1.0 ... 52.630."); end if (((CLKIN2_PERIOD < 1.0) || (CLKIN2_PERIOD > 52.630)) && (pmcd_mode == 0)) begin $display("Attribute Syntax Error : CLKIN1_PERIOD is not in range 1.0 ... 52.630."); end case (RESET_ON_LOSS_OF_LOCK) "FALSE" : rst_on_loss = 1'b0; // "TRUE" : if (pmcd_mode) rst_on_loss = 1'b0; else rst_on_loss = 1'b1; default : begin $display("Attribute Syntax Error : The Attribute RESET_ON_LOSS_OF_LOCK on PLL_ADV instance %m is set to %s. This attribute must always be set to FALSE for X_PLL_ADV to function correctly. Please correct the setting for the attribute and re-run the simulation.", RESET_ON_LOSS_OF_LOCK); $finish; end endcase case (CLKFBOUT_MULT) 1 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1101; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b0101; pll_res = 4'b1111; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b0101; pll_res = 4'b1111; pll_lfhf = 2'b11; end 2 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1110; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b1111; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1110; pll_res = 4'b1111; pll_lfhf = 2'b11; end 3 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0110; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b0111; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b0110; pll_res = 4'b0101; pll_lfhf = 2'b11; end 4 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1010; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1101; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b0111; pll_res = 4'b1001; pll_lfhf = 2'b11; end 5 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b0101; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1101; pll_res = 4'b1001; pll_lfhf = 2'b11; end 6 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b0101; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b0111; pll_res = 4'b0001; pll_lfhf = 2'b11; end 7 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1001; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1100; pll_res = 4'b0001; pll_lfhf = 2'b11; end 8 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1110; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1111; pll_res = 4'b1110; pll_lfhf = 2'b11; end 9 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1110; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1110; pll_res = 4'b0001; pll_lfhf = 2'b11; end 10 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b0001; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1111; pll_res = 4'b0001; pll_lfhf = 2'b11; end 11 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b0001; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1101; pll_res = 4'b0110; pll_lfhf = 2'b11; end 12 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b0110; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1110; pll_res = 4'b0110; pll_lfhf = 2'b11; end 13 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b0110; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1110; pll_res = 4'b0110; pll_lfhf = 2'b11; end 14 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b0110; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1111; pll_res = 4'b0110; pll_lfhf = 2'b11; end 15 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH === "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b1010; pll_lfhf = 2'b11; end else if (BANDWIDTH === "OPTIMIZED") begin pll_cp = 4'b1110; pll_res = 4'b1010; pll_lfhf = 2'b11; end 16 : if (BANDWIDTH === "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b1010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1110; pll_res = 4'b1010; pll_lfhf = 2'b11; end 17 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1111; pll_res = 4'b1010; pll_lfhf = 2'b11; end 18 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1111; pll_res = 4'b1010; pll_lfhf = 2'b11; end 19 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1111; pll_res = 4'b1010; pll_lfhf = 2'b11; end 20 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1100; pll_res = 4'b1100; pll_lfhf = 2'b11; end 21 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1100; pll_res = 4'b1100; pll_lfhf = 2'b11; end 22 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1101; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1101; pll_res = 4'b1100; pll_lfhf = 2'b11; end 23 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1101; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1101; pll_res = 4'b1100; pll_lfhf = 2'b11; end 24 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1101; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0111; pll_res = 4'b0010; pll_lfhf = 2'b11; end 25 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1110; pll_res = 4'b1100; pll_lfhf = 2'b11; end 26 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1110; pll_res = 4'b1100; pll_lfhf = 2'b11; end 27 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1111; pll_res = 4'b1100; pll_lfhf = 2'b11; end 28 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1100; pll_res = 4'b0010; pll_lfhf = 2'b11; end 29 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1100; pll_res = 4'b0010; pll_lfhf = 2'b11; end 30 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0001; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1110; pll_res = 4'b1100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1100; pll_res = 4'b0010; pll_lfhf = 2'b11; end 31 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1100; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1100; pll_res = 4'b0010; pll_lfhf = 2'b11; end 32 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1100; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b1100; pll_res = 4'b0010; pll_lfhf = 2'b11; end 33 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b1111; pll_res = 4'b1010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end 34 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0111; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end 35 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0111; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end 36 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0111; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end 37 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0110; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end 38 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0110; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end 39 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end 40 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0011; pll_res = 4'b1000; pll_lfhf = 2'b11; end 41 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0011; pll_res = 4'b1000; pll_lfhf = 2'b11; end 42 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0011; pll_res = 4'b1000; pll_lfhf = 2'b11; end 43 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0011; pll_res = 4'b1000; pll_lfhf = 2'b11; end 44 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0100; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0011; pll_res = 4'b1000; pll_lfhf = 2'b11; end 45 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0011; pll_res = 4'b1000; pll_lfhf = 2'b11; end 46 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0011; pll_res = 4'b1000; pll_lfhf = 2'b11; end 47 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0101; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 48 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0101; pll_res = 4'b0010; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 49 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 50 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 51 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 52 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 53 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 54 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 55 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end 56 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0011; pll_res = 4'b0100; pll_lfhf = 2'b11; end 57 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 58 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 59 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 60 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 61 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 62 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 63 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end 64 : if (BANDWIDTH == "LOW") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "HIGH") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end else if (BANDWIDTH == "OPTIMIZED") begin pll_cp = 4'b0010; pll_res = 4'b1000; pll_lfhf = 2'b11; end endcase tmp_string = "DIVCLK_DIVIDE"; chk_ok = para_int_range_chk (DIVCLK_DIVIDE, tmp_string, D_MIN, D_MAX); tmp_string = "CLKFBOUT_MULT"; chk_ok = para_int_range_chk (CLKFBOUT_MULT, tmp_string, M_MIN, M_MAX); tmp_string = "CLKOUT0_DUTY_CYCLE"; chk_ok = clkout_duty_chk (CLKOUT0_DIVIDE, CLKOUT0_DUTY_CYCLE, tmp_string); tmp_string = "CLKOUT1_DUTY_CYCLE"; chk_ok = clkout_duty_chk (CLKOUT1_DIVIDE, CLKOUT1_DUTY_CYCLE, tmp_string); tmp_string = "CLKOUT2_DUTY_CYCLE"; chk_ok = clkout_duty_chk (CLKOUT2_DIVIDE, CLKOUT2_DUTY_CYCLE, tmp_string); tmp_string = "CLKOUT3_DUTY_CYCLE"; chk_ok = clkout_duty_chk (CLKOUT3_DIVIDE, CLKOUT3_DUTY_CYCLE, tmp_string); tmp_string = "CLKOUT4_DUTY_CYCLE"; chk_ok = clkout_duty_chk (CLKOUT4_DIVIDE, CLKOUT4_DUTY_CYCLE, tmp_string); tmp_string = "CLKOUT5_DUTY_CYCLE"; chk_ok = clkout_duty_chk (CLKOUT5_DIVIDE, CLKOUT5_DUTY_CYCLE, tmp_string); period_vco_max = 1000000 / VCOCLK_FREQ_MIN; period_vco_min = 1000000 / VCOCLK_FREQ_MAX; period_vco_target = 1000000 / VCOCLK_FREQ_TARGET; period_vco_target_half = period_vco_target / 2; fb_delay_max = MAX_FEEDBACK_DELAY * MAX_FEEDBACK_DELAY_SCALE; md_product = CLKFBOUT_MULT * DIVCLK_DIVIDE; md_product_dbl = md_product * 2; clkout_en_time = `PLL_LOCK_TIME + 2; // locked_en_time = md_product_dbl + clkout_en_time +2; // for DCM 3 cycle reset requirement locked_en_time = md_product + clkout_en_time + 2; // for DCM 3 cycle reset requirement lock_cnt_max = locked_en_time + 6; clkfb_stop_max = 3; clkin_stop_max = DIVCLK_DIVIDE + 1; REF_CLK_JITTER_MAX_tmp = REF_CLK_JITTER_MAX; clk_out_para_cal (clk0_ht, clk0_lt, clk0_nocnt, clk0_edge, CLKOUT0_DIVIDE, CLKOUT0_DUTY_CYCLE); clk_out_para_cal (clk1_ht, clk1_lt, clk1_nocnt, clk1_edge, CLKOUT1_DIVIDE, CLKOUT1_DUTY_CYCLE); clk_out_para_cal (clk2_ht, clk2_lt, clk2_nocnt, clk2_edge, CLKOUT2_DIVIDE, CLKOUT2_DUTY_CYCLE); clk_out_para_cal (clk3_ht, clk3_lt, clk3_nocnt, clk3_edge, CLKOUT3_DIVIDE, CLKOUT3_DUTY_CYCLE); clk_out_para_cal (clk4_ht, clk4_lt, clk4_nocnt, clk4_edge, CLKOUT4_DIVIDE, CLKOUT4_DUTY_CYCLE); clk_out_para_cal (clk5_ht, clk5_lt, clk5_nocnt, clk5_edge, CLKOUT5_DIVIDE, CLKOUT5_DUTY_CYCLE); clk_out_para_cal (clkfbm1_ht, clkfbm1_lt, clkfbm1_nocnt, clkfbm1_edge, CLKFBOUT_MULT, 0.50); clk_out_para_cal (clkind_ht, clkind_lt, clkind_nocnt, clkind_edge, DIVCLK_DIVIDE, 0.50); tmp_string = "CLKOUT0_PHASE"; clkout_dly_cal (clkout0_dly, clk0pm_sel, CLKOUT0_DIVIDE, CLKOUT0_PHASE, tmp_string); tmp_string = "CLKOUT1_PHASE"; clkout_dly_cal (clkout1_dly, clk1pm_sel, CLKOUT1_DIVIDE, CLKOUT1_PHASE, tmp_string); tmp_string = "CLKOUT2_PHASE"; clkout_dly_cal (clkout2_dly, clk2pm_sel, CLKOUT2_DIVIDE, CLKOUT2_PHASE, tmp_string); tmp_string = "CLKOUT3_PHASE"; clkout_dly_cal (clkout3_dly, clk3pm_sel, CLKOUT3_DIVIDE, CLKOUT3_PHASE, tmp_string); tmp_string = "CLKOUT4_PHASE"; clkout_dly_cal (clkout4_dly, clk4pm_sel, CLKOUT4_DIVIDE, CLKOUT4_PHASE, tmp_string); tmp_string = "CLKOUT5_PHASE"; clkout_dly_cal (clkout5_dly, clk5pm_sel, CLKOUT5_DIVIDE, CLKOUT5_PHASE, tmp_string); tmp_string = "CLKFBOUT_PHASE"; clkout_dly_cal (clkfbm1_dly, clkfbm1pm_sel, CLKFBOUT_MULT, CLKFBOUT_PHASE, tmp_string); clkind_div = DIVCLK_DIVIDE; dr_sram[5'b11100] = {8'bx, clk0_edge, clk0_nocnt, clkout0_dly[5:0]}; dr_sram[5'b11011] = {clk0pm_sel[2:0], 1'b1, clk0_ht[5:0], clk0_lt[5:0]}; dr_sram[5'b11010] = {8'bx, clk1_edge, clk1_nocnt, clkout1_dly[5:0]}; dr_sram[5'b11001] = {clk1pm_sel[2:0], 1'b1, clk1_ht[5:0], clk1_lt[5:0]}; dr_sram[5'b10111] = {8'bx, clk2_edge, clk2_nocnt, clkout2_dly[5:0]}; dr_sram[5'b10110] = {clk2pm_sel[2:0], 1'b1, clk2_ht[5:0], clk2_lt[5:0]}; dr_sram[5'b10101] = {8'bx, clk3_edge, clk3_nocnt, clkout3_dly[5:0]}; dr_sram[5'b10100] = {clk3pm_sel[2:0], 1'b1, clk3_ht[5:0], clk3_lt[5:0]}; dr_sram[5'b10011] = {8'bx, clk4_edge, clk4_nocnt, clkout4_dly[5:0]}; dr_sram[5'b10010] = {clk4pm_sel[2:0], 1'b1, clk4_ht[5:0], clk4_lt[5:0]}; dr_sram[5'b01111] = {8'bx, clk5_edge, clk5_nocnt, clkout5_dly[5:0]}; dr_sram[5'b01110] = {clk5pm_sel[2:0], 1'b1, clk5_ht[5:0], clk5_lt[5:0]}; dr_sram[5'b01101] = {8'bx, clkfbm1_edge, clkfbm1_nocnt, clkfbm1_dly[5:0]}; dr_sram[5'b01100] = {clkfbm1pm_sel[2:0], 1'b1, clkfbm1_ht[5:0], clkfbm1_lt[5:0]}; dr_sram[5'b00110] = {2'bx, clkind_edge, clkind_nocnt, clkind_ht[5:0], clkind_lt[5:0]}; dr_sram[5'b00001] = {8'bx, pll_lfhf, pll_cpres, pll_cp}; dr_sram[5'b00000] = {6'bx, pll_res, 6'bx}; // **** PMCD ******* //*** Clocks MUX case (RST_DEASSERT_CLK) "CLKIN1" : rel_o_mux_sel = 1'b1; "CLKFBIN" : rel_o_mux_sel = 1'b0; default : begin $display("Attribute Syntax Error : The attribute RST_DEASSERT_CLK on PLL_ADV instance %m is set to %s. Legal values for this attribute are CLKIN1 and CLKFBIN.", RST_DEASSERT_CLK); $finish; end endcase //*** CLKDIV_RST case (EN_REL) "FALSE" : clkdiv_rel_rst = 1'b0; "TRUE" : clkdiv_rel_rst = 1'b1; default : begin $display("Attribute Syntax Error : The attribute EN_REL on PLL_ADV instance %m is set to %s. Legal values for this attribute are TRUE or FALSE.", EN_REL); $finish; end endcase end initial begin rst_in1 = 0; rst_unlock = 0; clkin_period[0] = 0; clkin_period[1] = 0; clkin_period[2] = 0; clkin_period[3] = 0; clkin_period[4] = 0; period_avg = 0; period_fb = 0; fb_delay = 0; clkfbm1_div = 1; clkfbm1_div1 = 0; clkvco_delay = 0; fbm1_comp_delay = 0; clkfbm1pm_rl = 0; period_vco = 0; period_vco1 = 0; period_vco2 = 0; period_vco3 = 0; period_vco4 = 0; period_vco5 = 0; period_vco6 = 0; period_vco7 = 0; period_vco_half = 0; fb_delay_found = 0; fb_delay_found_tmp = 0; clkin_edge = 0; delay_edge = 0; clkvco_free = 0; clkvco_lk = 0; fbclk_tmp = 0; clkfb_tst = 0; clkout_cnt = 0; clkout_en = 0; clkout_en0 = 0; clkout_en0_tmp = 0; clkout_en1 = 0; pll_locked_tmp1 = 0; pll_locked_tmp2 = 0; pll_locked_tm = 0; pll_locked_delay = 0; clkout_mux = 3'b0; unlock_recover = 0; clkstop_cnt_p = 0; clkstop_cnt_n = 0; clkpll_jitter_unlock = 0; clkin_jit = 0; clkin_cnt = 0; clkin_lock_cnt = 0; clkin_stopped_p = 0; clkin_stopped_n = 0; clkfb_stopped_p = 0; clkfb_stopped_n = 0; clkpll_dly = 0; clkfbin_dly = 0; clkfbstop_cnt_p = 0; clkfbstop_cnt_n = 0; lock_period = 0; rst_edge = 0; rst_ht = 0; drdy_out = 0; drp_lock = 0; clkout0_out = 0; clkout1_out = 0; clkout2_out = 0; clkout3_out = 0; clkout4_out = 0; clkout5_out = 0; clka1_out = 1'b0; clkb1_out = 1'b0; clka1d2_out = 1'b0; clka1d4_out = 1'b0; clka1d8_out = 1'b0; qrel_o_reg1 = 1'b0; qrel_o_reg2 = 1'b0; qrel_o_reg3 = 1'b0; clk0_dly_cnt = 6'b0; clk1_dly_cnt = 6'b0; clk2_dly_cnt = 6'b0; clk3_dly_cnt = 6'b0; clk4_dly_cnt = 6'b0; clk5_dly_cnt = 6'b0; clkfbm1_dly_cnt = 6'b0; clk0_cnt = 8'b0; clk1_cnt = 8'b0; clk2_cnt = 8'b0; clk3_cnt = 8'b0; clk4_cnt = 8'b0; clk5_cnt = 8'b0; clkfbm1_cnt = 8'b0; clk0_out = 0; clk1_out = 0; clk2_out = 0; clk3_out = 0; clk4_out = 0; clk5_out = 0; clkfb_out = 0; clkfbm1_out = 0; end // PMCD function //*** asyn RST always @(orig_rst_in) if (orig_rst_in == 1'b1) begin assign qrel_o_reg1 = 1'b1; assign qrel_o_reg2 = 1'b1; assign qrel_o_reg3 = 1'b1; end else if (orig_rst_in == 1'b0) begin deassign qrel_o_reg1; deassign qrel_o_reg2; deassign qrel_o_reg3; end //*** Clocks MUX assign rel_o_mux_clk_tmp = rel_o_mux_sel ? clkin1_in : clkfb_in; assign rel_o_mux_clk = (pmcd_mode) ? rel_o_mux_clk_tmp : 0; assign clka1_in = (pmcd_mode) ? clkin1_in : 0; assign clkb1_in = (pmcd_mode) ? clkfb_in : 0; //*** Rel and Rst always @(posedge rel_o_mux_clk) qrel_o_reg1 <= 1'b0; always @(negedge rel_o_mux_clk) qrel_o_reg2 <= qrel_o_reg1; always @(posedge rel_in) qrel_o_reg3 <= 1'b0; assign rel_rst_o = clkdiv_rel_rst ? (qrel_o_reg3 || qrel_o_reg1) : qrel_o_reg1; //*** CLKA always @(clka1_in or qrel_o_reg2) if (qrel_o_reg2 == 1'b1) clka1_out <= 1'b0; else if (qrel_o_reg2 == 1'b0) clka1_out <= clka1_in; //*** CLKB always @(clkb1_in or qrel_o_reg2) if (qrel_o_reg2 == 1'b1) clkb1_out <= 1'b0; else if (qrel_o_reg2 == 1'b0) clkb1_out <= clkb1_in; //*** Clock divider always @(posedge clka1_in or posedge rel_rst_o) if (rel_rst_o == 1'b1) clka1d2_out <= 1'b0; else if (rel_rst_o == 1'b0) clka1d2_out <= ~clka1d2_out; always @(posedge clka1d2_out or posedge rel_rst_o) if (rel_rst_o == 1'b1) clka1d4_out <= 1'b0; else if (rel_rst_o == 1'b0) clka1d4_out <= ~clka1d4_out; always @(posedge clka1d4_out or posedge rel_rst_o) if (rel_rst_o == 1'b1) clka1d8_out <= 1'b0; else if (rel_rst_o == 1'b0) clka1d8_out <= ~clka1d8_out; assign CLKOUT5 = (pmcd_mode) ? 0 : clkout5_out; assign CLKOUT4 = (pmcd_mode) ? 0 : clkout4_out; assign CLKOUT3 = (pmcd_mode) ? clka1_out : clkout3_out; assign CLKOUT2 = (pmcd_mode) ? clka1d2_out : clkout2_out; assign CLKOUT1 = (pmcd_mode) ? clka1d4_out : clkout1_out; assign CLKOUT0 = (pmcd_mode) ? clka1d8_out : clkout0_out; assign CLKFBOUT = (pmcd_mode) ? clkb1_out : clkfb_out; assign CLKOUTDCM5 = (pmcd_mode) ? 0 : clkout5_out; assign CLKOUTDCM4 = (pmcd_mode) ? 0 : clkout4_out; assign CLKOUTDCM3 = (pmcd_mode) ? clka1_out : clkout3_out; assign CLKOUTDCM2 = (pmcd_mode) ? clka1d2_out : clkout2_out; assign CLKOUTDCM1 = (pmcd_mode) ? clka1d4_out : clkout1_out; assign CLKOUTDCM0 = (pmcd_mode) ? clka1d8_out : clkout0_out; assign CLKFBDCM = (pmcd_mode) ? clkb1_out : clkfb_out; // PLL function always @(clkinsel_in ) if (pmcd_mode != 1) begin if ($time >1 && rst_in != 1'b1) begin $display("Input Error : PLL input clock can only be switched when RST=1. CLKINSEL on instance %m at time %t changed when RST low, should change at RST high.", $time); $finish; end if (clkinsel_in ==1) begin if (CLKIN1_PERIOD > (1000.0 /CLKIN_FREQ_MIN) || CLKIN1_PERIOD < (1000.0 / CLKIN_FREQ_MAX)) begin $display (" Attribute Syntax Error : The attribute CLKIN1_PERIOD is set to %f ns and out the allowed range %f ns to %f ns.", CLKIN1_PERIOD, 1000.0/CLKIN_FREQ_MAX, 1000.0/CLKIN_FREQ_MIN); $finish; end end else if (clkinsel_in ==0) begin if (CLKIN2_PERIOD > (1000.0 /CLKIN_FREQ_MIN) || CLKIN2_PERIOD < (1000.0 / CLKIN_FREQ_MAX)) begin $display (" Attribute Syntax Error : The attribute CLKIN2_PERIOD is set to %f ns and out the allowed range %f ns to %f ns.", CLKIN2_PERIOD, 1000.0/CLKIN_FREQ_MAX, 1000.0/CLKIN_FREQ_MIN); $finish; end end period_clkin = (clkinsel_in) ? CLKIN1_PERIOD : CLKIN2_PERIOD; clkvco_freq_init_chk = 1000.0 * CLKFBOUT_MULT / (period_clkin * DIVCLK_DIVIDE); if (clkvco_freq_init_chk > VCOCLK_FREQ_MAX || clkvco_freq_init_chk < VCOCLK_FREQ_MIN) begin $display (" Attribute Syntax Error : The calculation of VCO frequency=%f Mhz. This exceeds the permitted VCO frequency range of %f Mhz to %f Mhz. The VCO frequency is calculated with formula: VCO frequency = CLKFBOUT_MULT / (DIVCLK_DIVIDE * CLKIN_PERIOD). Please adjust the attributes to the permitted VCO frequency range.", clkvco_freq_init_chk, VCOCLK_FREQ_MIN, VCOCLK_FREQ_MAX); $finish; end end assign init_trig = 1; assign clkpll_tmp = (clkinsel_in) ? clkin1_in : clkin2_in; assign clkpll = (pmcd_mode) ? 0 : clkpll_tmp; assign orig_rst_in = rst_input; always @(posedge clkpll or posedge orig_rst_in) if (orig_rst_in) rst_in1 <= 1; else rst_in1 <= orig_rst_in; assign rst_in = (rst_in1 || rst_unlock); always @(posedge pll_unlock) if (rst_on_loss ) begin rst_unlock <= 1'b1; rst_unlock <= #10000 1'b0; end always @(rst_input ) if (rst_input==1) rst_edge = $time; else if (rst_input==0 && rst_edge > 1) begin rst_ht = $time - rst_edge; if (rst_ht < 10000) $display("Input Error : RST on instance %m at time %t must be asserted at least for 10 ns.", $time); end // // DRP port read and write // assign do_out = dr_sram[daddr_lat]; always @(posedge dclk_in or posedge gsr_in) if (gsr_in == 1) begin drp_lock <= 0; end else begin if (den_in == 1) begin valid_daddr = addr_is_valid(daddr_in); if (drp_lock == 1) begin $display(" Warning : DEN is high at PLL_ADV instance %m at time %t. Need wait for DRDY signal before next read/write operation through DRP. ", $time); $finish; end else begin drp_lock <= 1; daddr_lat <= daddr_in; end if (valid_daddr && ( daddr_in == 5'b00110 || daddr_in == 5'b00001 || daddr_in == 5'b00000 || (daddr_in >= 5'b01100 && daddr_in <= 5'b11100 && daddr_in != 5'b10000 && daddr_in != 5'b10001 && daddr_in != 5'b11000 ))) begin end else begin $display(" Warning : Address DADDR=%b is unsupported at PLL_ADV instance %m at time %t. ", DADDR, $time); end if (dwe_in == 1) begin // write process if (rst_input == 1) begin if (valid_daddr && ( daddr_in == 5'b00110 || daddr_in == 5'b00001 || daddr_in == 5'b00000 || (daddr_in >= 5'b01100 && daddr_in <= 5'b11100 && daddr_in != 5'b10000 && daddr_in != 5'b10001 && daddr_in != 5'b11000 ))) begin dr_sram[daddr_in] <= di_in; end if (daddr_in == 5'b11100) clkout_delay_para_drp (clkout0_dly, clk0_nocnt, clk0_edge, di_in, daddr_in); if (daddr_in == 5'b11011) clkout_hl_para_drp (clk0_lt, clk0_ht, clk0pm_sel, di_in, daddr_in); if (daddr_in == 5'b11010) clkout_delay_para_drp (clkout1_dly, clk1_nocnt, clk1_edge, di_in, daddr_in); if (daddr_in == 5'b11001) clkout_hl_para_drp (clk1_lt, clk1_ht, clk1pm_sel, di_in, daddr_in); if (daddr_in == 5'b10111) clkout_delay_para_drp (clkout2_dly, clk2_nocnt, clk2_edge, di_in, daddr_in); if (daddr_in == 5'b10110) clkout_hl_para_drp (clk2_lt, clk2_ht, clk2pm_sel, di_in, daddr_in); if (daddr_in == 5'b10101) clkout_delay_para_drp (clkout3_dly, clk3_nocnt, clk3_edge, di_in, daddr_in); if (daddr_in == 5'b10100) clkout_hl_para_drp (clk3_lt, clk3_ht, clk3pm_sel, di_in, daddr_in); if (daddr_in == 5'b10011) clkout_delay_para_drp (clkout4_dly, clk4_nocnt, clk4_edge, di_in, daddr_in); if (daddr_in == 5'b10010) clkout_hl_para_drp (clk4_lt, clk4_ht, clk4pm_sel, di_in, daddr_in); if (daddr_in == 5'b01111) clkout_delay_para_drp (clkout5_dly, clk5_nocnt, clk5_edge, di_in, daddr_in); if (daddr_in == 5'b01110) clkout_hl_para_drp (clk5_lt, clk5_ht, clk5pm_sel, di_in, daddr_in); if (daddr_in == 5'b01101) clkout_delay_para_drp (clkfbm1_dly, clkfbm1_nocnt, clkfbm1_edge, di_in, daddr_in); if (daddr_in == 5'b01100) clkout_hl_para_drp (clkfbm1_lt, clkfbm1_ht, clkfbm1pm_sel, di_in, daddr_in); if (daddr_in == 5'b00110) begin clkind_lt <= di_in[5:0]; clkind_ht <= di_in[11:6]; if ( di_in[5:0] == 6'b0 && di_in[11:6] == 6'b0 ) clkind_div <= 8'b10000000; else if (di_in[5:0] == 6'b0 && di_in[11:6] != 6'b0 ) clkind_div <= 64 + di_in[11:6]; else if (di_in[5:0] == 6'b0 && di_in[11:6] != 6'b0 ) clkind_div <= 64 + di_in[5:0]; else clkind_div <= di_in[5:0] + di_in[11:6]; clkind_nocnt <= di_in[12]; clkind_edge <= di_in[13]; end end else begin $display(" Error : RST is low at PLL_ADV instance %m at time %t. RST need to be high when change X_PLL_ADV paramters through DRP. ", $time); end end //DWE end //DEN if ( drp_lock == 1) begin drp_lock <= 0; drp_lock1 <= 1; end if (drp_lock1 == 1) begin drp_lock1 <= 0; drdy_out <= 1; end if (drdy_out == 1) drdy_out <= 0; end function addr_is_valid; input [6:0] daddr_funcin; begin addr_is_valid = 1; for (i=0; i<=6; i=i+1) if ( daddr_funcin[i] != 0 && daddr_funcin[i] != 1) addr_is_valid = 0; end endfunction // end process drp; // // determine clock period // always @(posedge clkpll or posedge rst_in) if (rst_in) begin clkin_period[0] <= period_vco_target; clkin_period[1] <= period_vco_target; clkin_period[2] <= period_vco_target; clkin_period[3] <= period_vco_target; clkin_period[4] <= period_vco_target; clkin_jit <= 0; clkin_lock_cnt <= 0; pll_locked_tm <= 0; lock_period <= 0; pll_locked_tmp1 <= 0; clkout_en0_tmp <= 0; unlock_recover <= 0; clkin_edge <= 0; end else begin clkin_edge <= $time; clkin_period[4] <= clkin_period[3]; clkin_period[3] <= clkin_period[2]; clkin_period[2] <= clkin_period[1]; clkin_period[1] <= clkin_period[0]; if (clkin_edge != 0 && clkin_stopped_p == 0 && clkin_stopped_n == 0) clkin_period[0] <= $time - clkin_edge; if (pll_unlock == 0) clkin_jit <= $time - clkin_edge - clkin_period[0]; else clkin_jit <= 0; if ( (clkin_lock_cnt < lock_cnt_max) && fb_delay_found && pll_unlock == 0) clkin_lock_cnt <= clkin_lock_cnt + 1; else if (pll_unlock == 1 && rst_on_loss ==0 && pll_locked_tmp1 ==1 ) begin clkin_lock_cnt <= locked_en_time; unlock_recover <= 1; end if ( clkin_lock_cnt >= `PLL_LOCK_TIME && pll_unlock == 0) pll_locked_tm <= 1; if ( clkin_lock_cnt == 6 ) lock_period <= 1; if (clkin_lock_cnt >= clkout_en_time) begin clkout_en0_tmp <= 1; end if (clkin_lock_cnt >= locked_en_time) pll_locked_tmp1 <= 1; if (unlock_recover ==1 && clkin_lock_cnt >= lock_cnt_max) unlock_recover <= 0; end always @(clkout_en0_tmp) if (clkout_en0_tmp==0) clkout_en0 = 0; else @(negedge clkpll) clkout_en0 <= #(clkin_period[0]/2) clkout_en0_tmp; always @(clkout_en0) clkout_en <= #(clkvco_delay) clkout_en0; always @(pll_locked_tmp1 ) if (pll_locked_tmp1==0) pll_locked_tmp2 = pll_locked_tmp1; else begin pll_locked_tmp2 <= #pll_locked_delay pll_locked_tmp1; end always @(rst_in) if (rst_in) begin assign pll_locked_tmp2 = 0; assign clkout_en0 = 0; assign clkout_en = 0; end else begin deassign pll_locked_tmp2; deassign clkout_en0; deassign clkout_en; end assign locked_out = (pll_locked_tm && pll_locked_tmp2 && ~pll_unlock && !unlock_recover) ? 1 : 0; always @(clkin_period[0] or clkin_period[1] or clkin_period[2] or clkin_period[3] or clkin_period[4] or period_avg) if ( clkin_period[0] != period_avg) period_avg = (clkin_period[0] + clkin_period[1] + clkin_period[2] + clkin_period[3] + clkin_period[4])/5; always @(period_avg or clkind_div or clkfbm1_div) begin period_fb = period_avg * clkind_div; period_vco = period_fb / clkfbm1_div; period_vco_half = period_vco /2; pll_locked_delay = period_fb * clkfbm1_div; clkin_dly_t = period_avg * (clkind_div + 1.25); clkfb_dly_t = period_fb * 2.25 ; period_vco1 = period_vco / 8; period_vco2 = period_vco / 4; period_vco3 = period_vco * 3/ 8; period_vco4 = period_vco / 2; period_vco5 = period_vco * 5 / 8; period_vco6 = period_vco *3 / 4; period_vco7 = period_vco * 7 / 8; md_product = clkind_div * clkfbm1_div; md_product_dbl = clkind_div * clkfbm1_div * 2; end assign clkvco_lk_rst = ( rst_in == 1 || pll_unlock == 1 || pll_locked_tm == 0) ? 1 : 0; always @(clkvco_lk_rst) if (clkvco_lk_rst) assign clkvco_lk = 0; else deassign clkvco_lk; // always @(posedge clkpll or posedge rst_in or posedge pll_unlock) // if ( rst_in == 1 || pll_unlock == 1 || pll_locked_tm == 0) begin // clkvco_lk <= 0; // end // else begin always @(posedge clkpll) if (pll_locked_tm ==1) begin clkvco_lk <= 1; for (i1=1; i1 < md_product_dbl; i1=i1+1) #(period_vco_half) clkvco_lk <= ~clkvco_lk; end always @(fb_delay or period_vco or clkfbm1_dly or clkfbm1pm_rl) begin val_tmp = period_vco * md_product; fbm1_comp_delay = period_vco *(clkfbm1_dly + clkfbm1pm_rl ); dly_tmp = fb_delay + fbm1_comp_delay; if (fb_delay == 0) clkvco_delay = 0; else if ( dly_tmp < val_tmp) clkvco_delay = val_tmp - dly_tmp; else clkvco_delay = val_tmp - dly_tmp % val_tmp ; end always @(clkfbm1pm_sel) case (clkfbm1pm_sel) 3'b000 : clkfbm1pm_rl = 0.0; 3'b001 : clkfbm1pm_rl = 0.125; 3'b010 : clkfbm1pm_rl = 0.25; 3'b011 : clkfbm1pm_rl = 0.375; 3'b100 : clkfbm1pm_rl = 0.50; 3'b101 : clkfbm1pm_rl = 0.625; 3'b110 : clkfbm1pm_rl = 0.75; 3'b111 : clkfbm1pm_rl = 0.875; endcase always @(clkvco_free ) if (pmcd_mode != 1 && pll_locked_tm == 0) clkvco_free <= #period_vco_target_half ~clkvco_free; always @(clkvco_lk or clkvco_free or pll_locked_tm) if ( pll_locked_tm) clkvco <= #clkvco_delay clkvco_lk; else clkvco <= #clkvco_delay clkvco_free; always @(clk0_ht or clk0_lt or clk0_nocnt or init_trig) clkout_pm_cal(clk0_ht1, clk0_div, clk0_div1, clk0_ht, clk0_lt, clk0_nocnt, clk0_edge); always @(clk1_ht or clk1_lt or clk1_nocnt or init_trig) clkout_pm_cal(clk1_ht1, clk1_div, clk1_div1, clk1_ht, clk1_lt, clk1_nocnt, clk1_edge); always @(clk2_ht or clk2_lt or clk2_nocnt or init_trig) clkout_pm_cal(clk2_ht1, clk2_div, clk2_div1, clk2_ht, clk2_lt, clk2_nocnt, clk2_edge); always @(clk3_ht or clk3_lt or clk3_nocnt or init_trig) clkout_pm_cal(clk3_ht1, clk3_div, clk3_div1, clk3_ht, clk3_lt, clk3_nocnt, clk3_edge); always @(clk4_ht or clk4_lt or clk4_nocnt or init_trig) clkout_pm_cal(clk4_ht1, clk4_div, clk4_div1, clk4_ht, clk4_lt, clk4_nocnt, clk4_edge); always @(clk5_ht or clk5_lt or clk5_nocnt or init_trig) clkout_pm_cal(clk5_ht1, clk5_div, clk5_div1, clk5_ht, clk5_lt, clk5_nocnt, clk5_edge); always @(clkfbm1_ht or clkfbm1_lt or clkfbm1_nocnt or init_trig) clkout_pm_cal(clkfbm1_ht1, clkfbm1_div, clkfbm1_div1, clkfbm1_ht, clkfbm1_lt, clkfbm1_nocnt, clkfbm1_edge); always @(rst_in) if (rst_in) assign clkout_mux = 8'b0; else deassign clkout_mux; always @(clkvco or clkout_en ) if (clkout_en) begin clkout_mux[0] <= clkvco; clkout_mux[1] <= #(period_vco1) clkvco; clkout_mux[2] <= #(period_vco2) clkvco; clkout_mux[3] <= #(period_vco3) clkvco; clkout_mux[4] <= #(period_vco4) clkvco; clkout_mux[5] <= #(period_vco5) clkvco; clkout_mux[6] <= #(period_vco6) clkvco; clkout_mux[7] <= #(period_vco7) clkvco; end assign clk0in = clkout_mux[clk0pm_sel]; assign clk1in = clkout_mux[clk1pm_sel]; assign clk2in = clkout_mux[clk2pm_sel]; assign clk3in = clkout_mux[clk3pm_sel]; assign clk4in = clkout_mux[clk4pm_sel]; assign clk5in = clkout_mux[clk5pm_sel]; assign clkfbm1in = clkout_mux[clkfbm1pm_sel]; assign clk0ps_en = (clk0_dly_cnt == clkout0_dly) ? clkout_en : 0; assign clk1ps_en = (clk1_dly_cnt == clkout1_dly) ? clkout_en : 0; assign clk2ps_en = (clk2_dly_cnt == clkout2_dly) ? clkout_en : 0; assign clk3ps_en = (clk3_dly_cnt == clkout3_dly) ? clkout_en : 0; assign clk4ps_en = (clk4_dly_cnt == clkout4_dly) ? clkout_en : 0; assign clk5ps_en = (clk5_dly_cnt == clkout5_dly) ? clkout_en : 0; assign clkfbm1ps_en = (clkfbm1_dly_cnt == clkfbm1_dly) ? clkout_en : 0; always @(negedge clk0in or posedge rst_in) if (rst_in) clk0_dly_cnt <= 6'b0; else if (clk0_dly_cnt < clkout0_dly && clkout_en ==1) clk0_dly_cnt <= clk0_dly_cnt + 1; always @(negedge clk1in or posedge rst_in) if (rst_in) clk1_dly_cnt <= 6'b0; else if (clk1_dly_cnt < clkout1_dly && clkout_en ==1) clk1_dly_cnt <= clk1_dly_cnt + 1; always @(negedge clk2in or posedge rst_in) if (rst_in) clk2_dly_cnt <= 6'b0; else if (clk2_dly_cnt < clkout2_dly && clkout_en ==1) clk2_dly_cnt <= clk2_dly_cnt + 1; always @(negedge clk3in or posedge rst_in) if (rst_in) clk3_dly_cnt <= 6'b0; else if (clk3_dly_cnt < clkout3_dly && clkout_en ==1) clk3_dly_cnt <= clk3_dly_cnt + 1; always @(negedge clk4in or posedge rst_in) if (rst_in) clk4_dly_cnt <= 6'b0; else if (clk4_dly_cnt < clkout4_dly && clkout_en ==1) clk4_dly_cnt <= clk4_dly_cnt + 1; always @(negedge clk5in or posedge rst_in) if (rst_in) clk5_dly_cnt <= 6'b0; else if (clk5_dly_cnt < clkout5_dly && clkout_en ==1) clk5_dly_cnt <= clk5_dly_cnt + 1; always @(negedge clkfbm1in or posedge rst_in) if (rst_in) clkfbm1_dly_cnt <= 6'b0; else if (clkfbm1_dly_cnt < clkfbm1_dly && clkout_en ==1) clkfbm1_dly_cnt <= clkfbm1_dly_cnt + 1; always @(posedge clk0in or negedge clk0in or posedge rst_in) if (rst_in) begin clk0_cnt <= 8'b0; clk0_out <= 0; end else if (clk0ps_en) begin if (clk0_cnt < clk0_div1) clk0_cnt <= clk0_cnt + 1; else clk0_cnt <= 8'b0; if (clk0_cnt < clk0_ht1) clk0_out <= 1; else clk0_out <= 0; end else begin clk0_cnt <= 8'b0; clk0_out <= 0; end always @(posedge clk1in or negedge clk1in or posedge rst_in) if (rst_in) begin clk1_cnt <= 8'b0; clk1_out <= 0; end else if (clk1ps_en) begin if (clk1_cnt < clk1_div1) clk1_cnt <= clk1_cnt + 1; else clk1_cnt <= 8'b0; if (clk1_cnt < clk1_ht1) clk1_out <= 1; else clk1_out <= 0; end else begin clk1_cnt <= 8'b0; clk1_out <= 0; end always @(posedge clk2in or negedge clk2in or posedge rst_in) if (rst_in) begin clk2_cnt <= 8'b0; clk2_out <= 0; end else if (clk2ps_en) begin if (clk2_cnt < clk2_div1) clk2_cnt <= clk2_cnt + 1; else clk2_cnt <= 8'b0; if (clk2_cnt < clk2_ht1) clk2_out <= 1; else clk2_out <= 0; end else begin clk2_cnt <= 8'b0; clk2_out <= 0; end always @(posedge clk3in or negedge clk3in or posedge rst_in) if (rst_in) begin clk3_cnt <= 8'b0; clk3_out <= 0; end else if (clk3ps_en) begin if (clk3_cnt < clk3_div1) clk3_cnt <= clk3_cnt + 1; else clk3_cnt <= 8'b0; if (clk3_cnt < clk3_ht1) clk3_out <= 1; else clk3_out <= 0; end else begin clk3_cnt <= 8'b0; clk3_out <= 0; end always @(posedge clk4in or negedge clk4in or posedge rst_in) if (rst_in) begin clk4_cnt <= 8'b0; clk4_out <= 0; end else if (clk4ps_en) begin if (clk4_cnt < clk4_div1) clk4_cnt <= clk4_cnt + 1; else clk4_cnt <= 8'b0; if (clk4_cnt < clk4_ht1) clk4_out <= 1; else clk4_out <= 0; end else begin clk4_cnt <= 8'b0; clk4_out <= 0; end always @(posedge clk5in or negedge clk5in or posedge rst_in) if (rst_in) begin clk5_cnt <= 8'b0; clk5_out <= 0; end else if (clk5ps_en) begin if (clk5_cnt < clk5_div1) clk5_cnt <= clk5_cnt + 1; else clk5_cnt <= 8'b0; if (clk5_cnt < clk5_ht1) clk5_out <= 1; else clk5_out <= 0; end else begin clk5_cnt <= 8'b0; clk5_out <= 0; end always @(posedge clkfbm1in or negedge clkfbm1in or posedge rst_in) if (rst_in) begin clkfbm1_cnt <= 8'b0; clkfbm1_out <= 0; end else if (clkfbm1ps_en) begin if (clkfbm1_cnt < clkfbm1_div1) clkfbm1_cnt <= clkfbm1_cnt + 1; else clkfbm1_cnt <= 8'b0; if (clkfbm1_cnt < clkfbm1_ht1) clkfbm1_out <= 1; else clkfbm1_out <= 0; end else begin clkfbm1_cnt <= 8'b0; clkfbm1_out <= 0; end always @(clk0_out or clkfb_tst or fb_delay_found) if (fb_delay_found == 1) clkout0_out = clk0_out; else clkout0_out = clkfb_tst; always @(clk1_out or clkfb_tst or fb_delay_found) if (fb_delay_found == 1) clkout1_out = clk1_out; else clkout1_out = clkfb_tst; always @(clk2_out or clkfb_tst or fb_delay_found) if (fb_delay_found == 1) clkout2_out = clk2_out; else clkout2_out = clkfb_tst; always @(clk3_out or clkfb_tst or fb_delay_found) if (fb_delay_found == 1) clkout3_out = clk3_out; else clkout3_out = clkfb_tst; always @(clk4_out or clkfb_tst or fb_delay_found) if (fb_delay_found == 1) clkout4_out = clk4_out; else clkout4_out = clkfb_tst; always @(clk5_out or clkfb_tst or fb_delay_found) if (fb_delay_found == 1) clkout5_out = clk5_out; else clkout5_out = clkfb_tst; always @(clkfbm1_out or clkfb_tst or fb_delay_found) if (fb_delay_found == 1) clkfb_out = clkfbm1_out; else clkfb_out = clkfb_tst; // // determine feedback delay // always @(rst_in1) if (rst_in1) assign clkfb_tst = 0; else deassign clkfb_tst; always @(posedge clkpll ) if (fb_delay_found_tmp == 0 && GSR == 0 && rst_in1 == 0) begin clkfb_tst <= 1'b1; end else clkfb_tst <= 1'b0; always @( posedge clkfb_tst or posedge rst_in1 ) if (rst_in1) delay_edge <= 0; else delay_edge <= $time; always @(posedge clkfb_in or posedge rst_in1 ) if (rst_in1) begin fb_delay <= 0; fb_delay_found_tmp <= 0; end else if (fb_delay_found_tmp ==0 ) begin if ( delay_edge != 0) fb_delay <= ($time - delay_edge); else fb_delay <= 0; fb_delay_found_tmp <= 1; end always @(rst_in1) if (rst_in1) assign fb_delay_found = 0; else deassign fb_delay_found; always @(fb_delay_found_tmp or clkvco_delay ) fb_delay_found <= #(clkvco_delay) fb_delay_found_tmp; always @(fb_delay) if (rst_in1==0 && (fb_delay/1000.0 > fb_delay_max)) begin $display("Warning : The feedback delay on PLL_ADV instance %m at time %t is %f ns. It is over the maximun value %f ns.", $time, fb_delay / 1000.0, fb_delay_max); end // // generate unlock signal // always @(clkpll) clkpll_dly <= #clkin_dly_t clkpll; always @(clkfb_in) if (pmcd_mode != 1) clkfbin_dly <= #clkfb_dly_t clkfb_in; else clkfbin_dly = 0; always @( posedge clkpll_dly or negedge clkpll or posedge rst_in) if (rst_in || clkpll == 0) begin clkstop_cnt_p = 0; clkin_stopped_p = 0; end else if (fb_delay_found && pll_locked_tmp2) begin if (clkpll && clkpll_jitter_unlock == 0) clkstop_cnt_p <= clkstop_cnt_p +1; else clkstop_cnt_p = 0; if (clkstop_cnt_p > clkin_stop_max) clkin_stopped_p <= 1; else clkin_stopped_p = 0; end else begin clkstop_cnt_p = 0; clkin_stopped_p = 0; end always @( posedge clkpll_dly or posedge clkpll or posedge rst_in) if (rst_in || clkpll == 1) begin clkstop_cnt_n = 0; clkin_stopped_n = 0; end else if (fb_delay_found && pll_locked_tmp2) begin if (clkpll==0 && clkpll_jitter_unlock == 0) clkstop_cnt_n <= clkstop_cnt_n +1; else clkstop_cnt_n = 0; if (clkstop_cnt_n > clkin_stop_max) clkin_stopped_n <= 1; else clkin_stopped_n = 0; end else begin clkstop_cnt_n = 0; clkin_stopped_n = 0; end always @( posedge clkfbin_dly or negedge clkfb_in or posedge rst_in) if (rst_in || clkfb_in == 0) begin clkfbstop_cnt_p = 0; clkfb_stopped_p = 0; end else if (fb_delay_found && pll_locked_tmp2) begin if (clkfb_in && clkpll_jitter_unlock == 0) clkfbstop_cnt_p <= clkfbstop_cnt_p +1; else clkfbstop_cnt_p = 0; if (clkfbstop_cnt_p > clkfb_stop_max) clkfb_stopped_p <= 1; else clkfb_stopped_p = 0; end else begin clkfbstop_cnt_p = 0; clkfb_stopped_p = 0; end always @( posedge clkfbin_dly or posedge clkfb_in or posedge rst_in) if (rst_in==1 || clkfb_in == 1) begin clkfbstop_cnt_n = 0; clkfb_stopped_n = 0; end else if (fb_delay_found && pll_locked_tmp2) begin if (clkfb_in==0 && clkpll_jitter_unlock == 0) clkfbstop_cnt_n <= clkfbstop_cnt_n +1; else clkfbstop_cnt_n = 0; if (clkfbstop_cnt_n > clkfb_stop_max) clkfb_stopped_n <= 1; else clkfb_stopped_n = 0; end else begin clkfbstop_cnt_n = 0; clkfb_stopped_n = 0; end always @(clkin_jit or rst_in ) if (rst_in) clkpll_jitter_unlock = 0; else if ( pll_locked_tmp2 && clkfb_stopped == 0 && clkin_stopped == 0) begin if ((clkin_jit > REF_CLK_JITTER_MAX_tmp) || (clkin_jit < -REF_CLK_JITTER_MAX_tmp)) clkpll_jitter_unlock = 1; else clkpll_jitter_unlock = 0; end else clkpll_jitter_unlock = 0; assign clkin_stopped = (clkin_stopped_p || clkin_stopped_n) ? 1 : 0; assign clkfb_stopped = (clkfb_stopped_p ||clkfb_stopped_n) ? 1 : 0; assign pll_unlock = (clkin_stopped || clkfb_stopped || clkpll_jitter_unlock) ? 1 : 0; // tasks task clkout_dly_cal; output [5:0] clkout_dly; output [2:0] clkpm_sel; input clkdiv; input clk_ps; input reg [160:0] clk_ps_name; integer clkdiv; real clk_ps; real clk_ps_rl; real clk_dly_rl, clk_dly_rem; integer clkout_dly_tmp; begin if (clk_ps < 0.0) clk_dly_rl = (360.0 + clk_ps) * clkdiv / 360.0; else clk_dly_rl = clk_ps * clkdiv / 360.0; clkout_dly_tmp = $rtoi(clk_dly_rl); if (clkout_dly_tmp > 63) begin $display(" Warning : Attribute %s of PLL_ADV on instance %m is set to %f. Required phase shifting can not be reached since it is over the maximum phase shifting ability of X_PLL_ADV", clk_ps_name, clk_ps); clkout_dly = 6'b111111; end else clkout_dly = clkout_dly_tmp; clk_dly_rem = clk_dly_rl - clkout_dly; if (clk_dly_rem < 0.125) clkpm_sel = 0; else if (clk_dly_rem >= 0.125 && clk_dly_rem < 0.25) clkpm_sel = 1; else if (clk_dly_rem >= 0.25 && clk_dly_rem < 0.375) clkpm_sel = 2; else if (clk_dly_rem >= 0.375 && clk_dly_rem < 0.5) clkpm_sel = 3; else if (clk_dly_rem >= 0.5 && clk_dly_rem < 0.625) clkpm_sel = 4; else if (clk_dly_rem >= 0.625 && clk_dly_rem < 0.75) clkpm_sel = 5; else if (clk_dly_rem >= 0.75 && clk_dly_rem < 0.875) clkpm_sel = 6; else if (clk_dly_rem >= 0.875 ) clkpm_sel = 7; if (clk_ps < 0.0) clk_ps_rl = (clkout_dly + 0.125 * clkpm_sel)* 360.0 / clkdiv - 360.0; else clk_ps_rl = (clkout_dly + 0.125 * clkpm_sel) * 360.0 / clkdiv; if (((clk_ps_rl- clk_ps) > 0.001) || ((clk_ps_rl- clk_ps) < -0.001)) $display(" Warning : Attribute %s of PLL_ADV on instance %m is set to %f. Real phase shifting is %f. Required phase shifting can not be reached.", clk_ps_name, clk_ps, clk_ps_rl); end endtask task clk_out_para_cal; output [6:0] clk_ht; output [6:0] clk_lt; output clk_nocnt; output clk_edge; input CLKOUT_DIVIDE; input CLKOUT_DUTY_CYCLE; integer CLKOUT_DIVIDE; real CLKOUT_DUTY_CYCLE; real tmp_value; integer tmp_value1; real tmp_value2; begin tmp_value = CLKOUT_DIVIDE * CLKOUT_DUTY_CYCLE; tmp_value1 = $rtoi(tmp_value * 2) % 2; tmp_value2 = CLKOUT_DIVIDE - tmp_value; if ((tmp_value) >= O_MAX_HT_LT) begin // clk_ht = O_MAX_HT_LT; clk_ht = 7'b1000000; end else begin if (tmp_value < 1.0) clk_ht = 1; else if ( tmp_value1 != 0) clk_ht = $rtoi(tmp_value) + 1; else clk_ht = $rtoi(tmp_value); end if ( (CLKOUT_DIVIDE - clk_ht) >= O_MAX_HT_LT) clk_lt = 7'b1000000; else clk_lt = CLKOUT_DIVIDE - clk_ht; clk_nocnt = (CLKOUT_DIVIDE ==1) ? 1 : 0; if ( tmp_value < 1.0) clk_edge = 1; else if (tmp_value1 != 0) clk_edge = 1; else clk_edge = 0; end endtask function clkout_duty_chk; input CLKOUT_DIVIDE; input CLKOUT_DUTY_CYCLE; input reg [160:0] CLKOUT_DUTY_CYCLE_N; integer CLKOUT_DIVIDE, step_tmp; real CLKOUT_DUTY_CYCLE; real CLK_DUTY_CYCLE_MIN, CLK_DUTY_CYCLE_MAX, CLK_DUTY_CYCLE_STEP; real CLK_DUTY_CYCLE_MIN_rnd; reg clk_duty_tmp_int; begin if (CLKOUT_DIVIDE > O_MAX_HT_LT) begin CLK_DUTY_CYCLE_MIN = (CLKOUT_DIVIDE - O_MAX_HT_LT)/CLKOUT_DIVIDE; CLK_DUTY_CYCLE_MAX = (O_MAX_HT_LT + 0.5)/CLKOUT_DIVIDE; CLK_DUTY_CYCLE_MIN_rnd = CLK_DUTY_CYCLE_MIN; end else begin if (CLKOUT_DIVIDE == 1) begin CLK_DUTY_CYCLE_MIN = 0.0; CLK_DUTY_CYCLE_MIN_rnd = 0.0; end else begin step_tmp = 1000 / CLKOUT_DIVIDE; CLK_DUTY_CYCLE_MIN_rnd = step_tmp / 1000.0; CLK_DUTY_CYCLE_MIN = 1.0 /CLKOUT_DIVIDE; end CLK_DUTY_CYCLE_MAX = 1.0; end if (CLKOUT_DUTY_CYCLE > CLK_DUTY_CYCLE_MAX || CLKOUT_DUTY_CYCLE < CLK_DUTY_CYCLE_MIN_rnd) begin $display(" Attribute Syntax Warning : %s is set to %f on instance %m and is not in the allowed range %f to %f.", CLKOUT_DUTY_CYCLE_N, CLKOUT_DUTY_CYCLE, CLK_DUTY_CYCLE_MIN, CLK_DUTY_CYCLE_MAX ); end clk_duty_tmp_int = 0; CLK_DUTY_CYCLE_STEP = 0.5 / CLKOUT_DIVIDE; for (j = 0; j < (2 * CLKOUT_DIVIDE - CLK_DUTY_CYCLE_MIN/CLK_DUTY_CYCLE_STEP); j = j + 1) if (((CLK_DUTY_CYCLE_MIN + CLK_DUTY_CYCLE_STEP * j) - CLKOUT_DUTY_CYCLE) > -0.001 && ((CLK_DUTY_CYCLE_MIN + CLK_DUTY_CYCLE_STEP * j) - CLKOUT_DUTY_CYCLE) < 0.001) clk_duty_tmp_int = 1; if ( clk_duty_tmp_int != 1) begin $display(" Attribute Syntax Warning : %s is set to %f on instance %m and is not an allowed value. Allowed values are:", CLKOUT_DUTY_CYCLE_N, CLKOUT_DUTY_CYCLE); for (j = 0; j < (2 * CLKOUT_DIVIDE - CLK_DUTY_CYCLE_MIN/CLK_DUTY_CYCLE_STEP); j = j + 1) $display("%f", CLK_DUTY_CYCLE_MIN + CLK_DUTY_CYCLE_STEP * j); end clkout_duty_chk = 1'b1; end endfunction function para_int_pmcd_chk; input para_in; input reg [160:0] para_name; input range_low; input range_high; input pmcd_mode; input pmcd_value; integer para_in; integer range_low; integer range_high; integer pmcd_value; begin if (para_in < range_low || para_in > range_high) begin $display("Attribute Syntax Error : The Attribute %s on PLL_ADV instance %m is set to %d. Legal values for this attribute are %d to %d.", para_name, para_in, range_low, range_high); $finish; end else if (pmcd_mode == 1 && para_in != pmcd_value) begin $display("Attribute Syntax Error : The Attribute %s on PLL_ADV instance %m is set to %d when attribute PLL_PMCD_MODE is set to TRUE. Legal values for this attribute is %d when PLL in PMCD MODE.", para_name, para_in, pmcd_value); $finish; end para_int_pmcd_chk = 1'b1; end endfunction function para_real_pmcd_chk; input para_in; input reg [160:0] para_name; input range_low; input range_high; input pmcd_mode; input pmcd_value; real para_in; real range_low; real range_high; real pmcd_value; begin if (para_in < range_low || para_in > range_high) begin $display("Attribute Syntax Error : The Attribute %s on PLL_ADV instance %m is set to %f. Legal values for this attribute are %f to %f.", para_name, para_in, range_low, range_high); $finish; end else if (pmcd_mode == 1 && para_in != pmcd_value) begin $display("Attribute Syntax Error : The Attribute %s on PLL_ADV instance %m is set to %f when attribute PLL_PMCD_MODE is set to TRUE. Legal values for this attribute is %f when PLL in PMCD MODE.", para_name, para_in, pmcd_value); $finish; end para_real_pmcd_chk = 1'b0; end endfunction function para_int_range_chk; input para_in; input reg [160:0] para_name; input range_low; input range_high; integer para_in; integer range_low; integer range_high; begin if ( para_in < range_low || para_in > range_high) begin $display("Attribute Syntax Error : The Attribute %s on PLL_ADV instance %m is set to %d. Legal values for this attribute are %d to %d.", para_name, para_in, range_low, range_high); $finish; end para_int_range_chk = 1'b1; end endfunction function para_real_range_chk; input para_in; input reg [160:0] para_name; input range_low; input range_high; real para_in; real range_low; real range_high; begin if ( para_in < range_low || para_in > range_high) begin $display("Attribute Syntax Error : The Attribute %s on PLL_ADV instance %m is set to %f. Legal values for this attribute are %f to %f.", para_name, para_in, range_low, range_high); $finish; end para_real_range_chk = 1'b0; end endfunction task clkout_pm_cal; output [7:0] clk_ht1; output [7:0] clk_div; output [7:0] clk_div1; input [6:0] clk_ht; input [6:0] clk_lt; input clk_nocnt; input clk_edge; begin if (clk_nocnt ==1) begin clk_div = 8'b00000001; clk_div1 = 8'b00000001; clk_ht1 = 8'b00000001; end else begin if ( clk_edge == 1) clk_ht1 = 2 * clk_ht -1; else clk_ht1 = 2 * clk_ht; clk_div = clk_ht + clk_lt ; clk_div1 = 2 * clk_div -1; end end endtask task clkout_delay_para_drp; output [5:0] clkout_dly; output clk_nocnt; output clk_edge; input [15:0] di_in; input [4:0] daddr_in; begin // if (di_in[15:8] != 8'h00) begin // $display(" Error : PLL_ADV on instance %m input DI[15:8] is set to %h and need to be set to 00h at address DADDR=%b at time %t.", di_in[15:8], daddr_in, $time); // $finish; // end clkout_dly = di_in[5:0]; clk_nocnt = di_in[6]; clk_edge = di_in[7]; end endtask task clkout_hl_para_drp; output [6:0] clk_lt; output [6:0] clk_ht; output [2:0] clkpm_sel; input [15:0] di_in_tmp; input [4:0] daddr_in_tmp; begin if (di_in_tmp[12] != 1) begin $display(" Error : PLL_ADV on instance %m input DI is %h at address DADDR=%b at time %t. The bit 12 need to be set to 1 .", di_in_tmp, daddr_in_tmp, $time); // $finish; end if ( di_in_tmp[5:0] == 6'b0) clk_lt = 7'b1000000; else clk_lt = { 1'b0, di_in[5:0]}; if (di_in_tmp[11:6] == 6'b0) clk_ht = 7'b1000000; else clk_ht = { 1'b0, di_in_tmp[11:6]}; clkpm_sel = di_in_tmp[15:13]; end endtask endmodule