// // Copyright 2011-2012 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////////////// // GPMC to FIFO // // Reads frames from BRAM pages and writes them into FIFO interface. // The GPMC is asynchronously alerted when a BRAM page is available. // // EM_CLK: // A GPMC write transaction consists of one EM_CLK cycle (idle low). // // EM_WE: // Write enable is actually the combination of ~NWE & ~NCS. // The write enable is active for the entire transaction. // // EM_D: // Data is set on the rising edge and written into BRAM on the falling edge. // // EM_A: // Address is set on the rising edge and read by BRAM on the falling edge. //////////////////////////////////////////////////////////////////////// module gpmc_to_fifo #(parameter PTR_WIDTH = 2, parameter ADDR_WIDTH = 10, parameter LAST_ADDR = 10'h3ff) (input [15:0] EM_D, input [ADDR_WIDTH:1] EM_A, input EM_CLK, input EM_WE, input clk, input reset, input clear, input arst, output [17:0] data_o, output src_rdy_o, input dst_rdy_i, output reg have_space); //states for the GPMC side of things reg gpmc_state; reg [ADDR_WIDTH:1] addr; reg [PTR_WIDTH:0] gpmc_ptr, next_gpmc_ptr; localparam GPMC_STATE_START = 0; localparam GPMC_STATE_FILL = 1; //states for the FIFO side of things reg [1:0] fifo_state; reg [ADDR_WIDTH-1:0] counter; reg [ADDR_WIDTH-1:0] last_counter; reg [ADDR_WIDTH-1:0] last_xfer; reg [PTR_WIDTH:0] fifo_ptr; localparam FIFO_STATE_CLAIM = 0; localparam FIFO_STATE_EMPTY = 1; localparam FIFO_STATE_PRE = 2; //------------------------------------------------------------------ // State machine to control the data from GPMC to BRAM //------------------------------------------------------------------ always @(negedge EM_CLK or posedge arst) begin if (arst) begin gpmc_state <= GPMC_STATE_START; gpmc_ptr <= 0; next_gpmc_ptr <= 0; addr <= 0; end else if (EM_WE) begin addr <= EM_A + 1; case(gpmc_state) GPMC_STATE_START: begin if (EM_A == 0) begin gpmc_state <= GPMC_STATE_FILL; next_gpmc_ptr <= gpmc_ptr + 1; end end GPMC_STATE_FILL: begin if (addr == LAST_ADDR) begin gpmc_state <= GPMC_STATE_START; gpmc_ptr <= next_gpmc_ptr; addr <= 0; end end endcase //gpmc_state end //EM_WE end //always //------------------------------------------------------------------ // A block ram is available to empty when the pointers dont match. //------------------------------------------------------------------ wire [PTR_WIDTH:0] safe_gpmc_ptr; cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_gpmc_ptr (.clk(clk), .rst(reset | clear), .in(gpmc_ptr), .out(safe_gpmc_ptr)); wire bram_available_to_empty = safe_gpmc_ptr != fifo_ptr; //------------------------------------------------------------------ // Glich free generation of have space signal: // High when the fifo pointer has not caught up to the gpmc pointer. //------------------------------------------------------------------ wire [PTR_WIDTH:0] safe_next_gpmc_ptr; cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_next_gpmc_ptr (.clk(clk), .rst(reset | clear), .in(next_gpmc_ptr), .out(safe_next_gpmc_ptr)); wire [PTR_WIDTH:0] fifo_ptr_next = fifo_ptr + 1; always @(posedge clk) if (reset | clear) have_space <= 0; else have_space <= (fifo_ptr ^ (1 << PTR_WIDTH)) != safe_next_gpmc_ptr; //------------------------------------------------------------------ // State machine to control the data from BRAM to FIFO //------------------------------------------------------------------ always @(posedge clk) begin if (reset | clear) begin fifo_state <= FIFO_STATE_CLAIM; fifo_ptr <= 0; counter <= 0; end else begin case(fifo_state) FIFO_STATE_CLAIM: begin if (bram_available_to_empty && data_o[16]) fifo_state <= FIFO_STATE_PRE; counter <= 0; end FIFO_STATE_PRE: begin fifo_state <= FIFO_STATE_EMPTY; counter <= counter + 1; end FIFO_STATE_EMPTY: begin if (src_rdy_o && dst_rdy_i && data_o[17]) begin fifo_state <= FIFO_STATE_CLAIM; fifo_ptr <= fifo_ptr + 1; counter <= 0; end else if (src_rdy_o && dst_rdy_i) begin counter <= counter + 1; end end endcase //fifo_state end end //always wire enable = (fifo_state != FIFO_STATE_EMPTY) || dst_rdy_i; assign src_rdy_o = fifo_state == FIFO_STATE_EMPTY; //instantiate dual ported bram for async read + write ram_2port #(.DWIDTH(16),.AWIDTH(PTR_WIDTH + ADDR_WIDTH)) async_fifo_bram (.clka(~EM_CLK),.ena(1'b1),.wea(EM_WE), .addra({gpmc_ptr[PTR_WIDTH-1:0], addr}),.dia(EM_D),.doa(), .clkb(clk),.enb(enable),.web(1'b0), .addrb({fifo_ptr[PTR_WIDTH-1:0], counter}),.dib(18'h3ffff),.dob(data_o[15:0])); //store the vita length -> last xfer count always @(posedge clk) begin if (src_rdy_o && dst_rdy_i && data_o[16]) begin last_xfer <= {data_o[ADDR_WIDTH-2:0], 1'b0}; end end //logic for start and end of frame always @(posedge clk) if (enable) last_counter <= counter; assign data_o[17] = !data_o[16] && ((last_counter + 1'b1) == last_xfer); assign data_o[16] = last_counter == 0; endmodule // gpmc_to_fifo