// // Copyright 2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // Buffer pool. Contains 8 buffers, each 2K (512 by 32). Each buffer // is a dual-ported RAM. Port A on each of them is indirectly connected // to the wishbone bus by a bridge. Port B may be connected any one of the // 8 (4 rd, 4 wr) FIFO-like streaming interaces, or disconnected. The wishbone bus // provides access to all 8 buffers, and also controls the connections // between the ports and the buffers, allocating them as needed. // wb_adr is 16 bits -- // bits 13:11 select which buffer // bits 10:2 select line in buffer // bits 1:0 are unused (32-bit access only) // BUF_SIZE is in address lines (i.e. log2 of number of lines). // For S3 it should be 9 (512 words, 2KB) // For V5 it should be at least 10 (1024 words, 4KB) or 11 (2048 words, 8KB) module buffer_pool #(parameter BUF_SIZE = 9, parameter SET_ADDR = 64) (input wb_clk_i, input wb_rst_i, input wb_we_i, input wb_stb_i, input [15:0] wb_adr_i, input [31:0] wb_dat_i, output [31:0] wb_dat_o, output reg wb_ack_o, output wb_err_o, output wb_rty_o, input stream_clk, input stream_rst, input set_stb, input [7:0] set_addr, input [31:0] set_data, output [31:0] status, output sys_int_o, output [31:0] s0, output [31:0] s1, output [31:0] s2, output [31:0] s3, output [31:0] s4, output [31:0] s5, output [31:0] s6, output [31:0] s7, // Write Interfaces input [31:0] wr0_data_i, input [3:0] wr0_flags_i, input wr0_ready_i, output wr0_ready_o, input [31:0] wr1_data_i, input [3:0] wr1_flags_i, input wr1_ready_i, output wr1_ready_o, input [31:0] wr2_data_i, input [3:0] wr2_flags_i, input wr2_ready_i, output wr2_ready_o, input [31:0] wr3_data_i, input [3:0] wr3_flags_i, input wr3_ready_i, output wr3_ready_o, // Read Interfaces output [31:0] rd0_data_o, output [3:0] rd0_flags_o, output rd0_ready_o, input rd0_ready_i, output [31:0] rd1_data_o, output [3:0] rd1_flags_o, output rd1_ready_o, input rd1_ready_i, output [31:0] rd2_data_o, output [3:0] rd2_flags_o, output rd2_ready_o, input rd2_ready_i, output [31:0] rd3_data_o, output [3:0] rd3_flags_o, output rd3_ready_o, input rd3_ready_i ); wire [7:0] sel_a; wire [BUF_SIZE-1:0] buf_addra = wb_adr_i[BUF_SIZE+1:2]; // ignore address 1:0, 32-bit access only wire [2:0] which_buf = wb_adr_i[BUF_SIZE+4:BUF_SIZE+2]; // address 15:14 selects the buffer pool decoder_3_8 dec(.sel(which_buf),.res(sel_a)); genvar i; wire go; reg [2:0] port[0:7]; reg [3:0] read_src[0:3]; reg [3:0] write_src[0:3]; wire [7:0] done; wire [7:0] error; wire [7:0] idle; wire [31:0] buf_doa[0:7]; wire [7:0] buf_enb; wire [7:0] buf_web; wire [BUF_SIZE-1:0] buf_addrb[0:7]; wire [31:0] buf_dib[0:7]; wire [31:0] buf_dob[0:7]; wire [31:0] wr_data_i[0:7]; wire [3:0] wr_flags_i[0:7]; wire [7:0] wr_ready_i; wire [7:0] wr_ready_o; wire [31:0] rd_data_o[0:7]; wire [3:0] rd_flags_o[0:7]; wire [7:0] rd_ready_o; wire [7:0] rd_ready_i; assign status = {8'd0,idle[7:0],error[7:0],done[7:0]}; assign s0 = buf_addrb[0]; assign s1 = buf_addrb[1]; assign s2 = buf_addrb[2]; assign s3 = buf_addrb[3]; assign s4 = buf_addrb[4]; assign s5 = buf_addrb[5]; assign s6 = buf_addrb[6]; assign s7 = buf_addrb[7]; wire [31:0] fifo_ctrl; setting_reg #(.my_addr(SET_ADDR)) sreg(.clk(stream_clk),.rst(stream_rst),.strobe(set_stb),.addr(set_addr),.in(set_data), .out(fifo_ctrl),.changed(go)); integer k; always @(posedge stream_clk) if(stream_rst) for(k=0;k<8;k=k+1) port[k] <= 4; // disabled else for(k=0;k<8;k=k+1) if(go & (fifo_ctrl[31:28]==k)) port[k] <= fifo_ctrl[27:25]; always @(posedge stream_clk) if(stream_rst) for(k=0;k<4;k=k+1) read_src[k] <= 8; // disabled else for(k=0;k<4;k=k+1) if(go & fifo_ctrl[22] & (fifo_ctrl[27:25]==k)) read_src[k] <= fifo_ctrl[31:28]; always @(posedge stream_clk) if(stream_rst) for(k=0;k<4;k=k+1) write_src[k] <= 8; // disabled else for(k=0;k<4;k=k+1) if(go & fifo_ctrl[23] & (fifo_ctrl[27:25]==k)) write_src[k] <= fifo_ctrl[31:28]; generate for(i=0;i<8;i=i+1) begin : gen_buffer RAMB16_S36_S36 dpram (.DOA(buf_doa[i]),.ADDRA(buf_addra),.CLKA(wb_clk_i),.DIA(wb_dat_i),.DIPA(4'h0), .ENA(wb_stb_i & sel_a[i]),.SSRA(0),.WEA(wb_we_i), .DOB(buf_dob[i]),.ADDRB(buf_addrb[i]),.CLKB(stream_clk),.DIB(buf_dib[i]),.DIPB(4'h0), .ENB(buf_enb[i]),.SSRB(0),.WEB(buf_web[i]) ); /* ram_2port #(.DWIDTH(32),.AWIDTH(BUF_SIZE)) buffer (.clka(wb_clk_i),.ena(wb_stb_i & sel_a[i]),.wea(wb_we_i), .addra(buf_addra),.dia(wb_dat_i),.doa(buf_doa[i]), .clkb(stream_clk),.enb(buf_enb[i]),.web(buf_web[i]), .addrb(buf_addrb[i]),.dib(buf_dib[i]),.dob(buf_dob[i])); */ buffer_int #(.BUF_NUM(i),.BUF_SIZE(BUF_SIZE)) buffer_int (.clk(stream_clk),.rst(stream_rst), .ctrl_word(fifo_ctrl),.go(go & (fifo_ctrl[31:28]==i)), .done(done[i]),.error(error[i]),.idle(idle[i]), .en_o(buf_enb[i]), .we_o(buf_web[i]), .addr_o(buf_addrb[i]), .dat_to_buf(buf_dib[i]), .dat_from_buf(buf_dob[i]), .wr_data_i(wr_data_i[i]), .wr_flags_i(wr_flags_i[i]), .wr_ready_i(wr_ready_i[i]), .wr_ready_o(wr_ready_o[i]), .rd_data_o(rd_data_o[i]), .rd_flags_o(rd_flags_o[i]), .rd_ready_o(rd_ready_o[i]), .rd_ready_i(rd_ready_i[i]) ); mux4 #(.WIDTH(37)) mux4_wr (.en(~port[i][2]),.sel(port[i][1:0]), .i0({wr0_data_i,wr0_flags_i,wr0_ready_i}), .i1({wr1_data_i,wr1_flags_i,wr1_ready_i}), .i2({wr2_data_i,wr2_flags_i,wr2_ready_i}), .i3({wr3_data_i,wr3_flags_i,wr3_ready_i}), .o({wr_data_i[i],wr_flags_i[i],wr_ready_i[i]}) ); mux4 #(.WIDTH(1)) mux4_rd (.en(~port[i][2]),.sel(port[i][1:0]), .i0(rd0_ready_i),.i1(rd1_ready_i),.i2(rd2_ready_i),.i3(rd3_ready_i), .o(rd_ready_i[i])); end // block: gen_buffer endgenerate //---------------------------------------------------------------------- // Wishbone Outputs // Use the following lines if ram output and mux can be made fast enough assign wb_err_o = 1'b0; // Unused for now assign wb_rty_o = 1'b0; // Unused for now always @(posedge wb_clk_i) wb_ack_o <= wb_stb_i & ~wb_ack_o; assign wb_dat_o = buf_doa[which_buf]; // Use this if we can't make the RAM+MUX fast enough // reg [31:0] wb_dat_o_reg; // reg stb_d1; // always @(posedge wb_clk_i) // begin // wb_dat_o_reg <= buf_doa[which_buf]; // stb_d1 <= wb_stb_i; // wb_ack_o <= (stb_d1 & ~wb_ack_o) | (wb_we_i & wb_stb_i); // end //assign wb_dat_o = wb_dat_o_reg; mux8 #(.WIDTH(1)) mux8_wr0(.en(~write_src[0][3]),.sel(write_src[0][2:0]), .i0(wr_ready_o[0]), .i1(wr_ready_o[1]), .i2(wr_ready_o[2]), .i3(wr_ready_o[3]), .i4(wr_ready_o[4]), .i5(wr_ready_o[5]), .i6(wr_ready_o[6]), .i7(wr_ready_o[7]), .o(wr0_ready_o)); mux8 #(.WIDTH(1)) mux8_wr1(.en(~write_src[1][3]),.sel(write_src[1][2:0]), .i0(wr_ready_o[0]), .i1(wr_ready_o[1]), .i2(wr_ready_o[2]), .i3(wr_ready_o[3]), .i4(wr_ready_o[4]), .i5(wr_ready_o[5]), .i6(wr_ready_o[6]), .i7(wr_ready_o[7]), .o(wr1_ready_o)); mux8 #(.WIDTH(1)) mux8_wr2(.en(~write_src[2][3]),.sel(write_src[2][2:0]), .i0(wr_ready_o[0]), .i1(wr_ready_o[1]), .i2(wr_ready_o[2]), .i3(wr_ready_o[3]), .i4(wr_ready_o[4]), .i5(wr_ready_o[5]), .i6(wr_ready_o[6]), .i7(wr_ready_o[7]), .o(wr2_ready_o)); mux8 #(.WIDTH(1)) mux8_wr3(.en(~write_src[3][3]),.sel(write_src[3][2:0]), .i0(wr_ready_o[0]), .i1(wr_ready_o[1]), .i2(wr_ready_o[2]), .i3(wr_ready_o[3]), .i4(wr_ready_o[4]), .i5(wr_ready_o[5]), .i6(wr_ready_o[6]), .i7(wr_ready_o[7]), .o(wr3_ready_o)); mux8 #(.WIDTH(37)) mux8_rd0(.en(~read_src[0][3]),.sel(read_src[0][2:0]), .i0({rd_data_o[0],rd_flags_o[0],rd_ready_o[0]}), .i1({rd_data_o[1],rd_flags_o[1],rd_ready_o[1]}), .i2({rd_data_o[2],rd_flags_o[2],rd_ready_o[2]}), .i3({rd_data_o[3],rd_flags_o[3],rd_ready_o[3]}), .i4({rd_data_o[4],rd_flags_o[4],rd_ready_o[4]}), .i5({rd_data_o[5],rd_flags_o[5],rd_ready_o[5]}), .i6({rd_data_o[6],rd_flags_o[6],rd_ready_o[6]}), .i7({rd_data_o[7],rd_flags_o[7],rd_ready_o[7]}), .o({rd0_data_o,rd0_flags_o,rd0_ready_o})); mux8 #(.WIDTH(37)) mux8_rd1(.en(~read_src[1][3]),.sel(read_src[1][2:0]), .i0({rd_data_o[0],rd_flags_o[0],rd_ready_o[0]}), .i1({rd_data_o[1],rd_flags_o[1],rd_ready_o[1]}), .i2({rd_data_o[2],rd_flags_o[2],rd_ready_o[2]}), .i3({rd_data_o[3],rd_flags_o[3],rd_ready_o[3]}), .i4({rd_data_o[4],rd_flags_o[4],rd_ready_o[4]}), .i5({rd_data_o[5],rd_flags_o[5],rd_ready_o[5]}), .i6({rd_data_o[6],rd_flags_o[6],rd_ready_o[6]}), .i7({rd_data_o[7],rd_flags_o[7],rd_ready_o[7]}), .o({rd1_data_o,rd1_flags_o,rd1_ready_o})); mux8 #(.WIDTH(37)) mux8_rd2(.en(~read_src[2][3]),.sel(read_src[2][2:0]), .i0({rd_data_o[0],rd_flags_o[0],rd_ready_o[0]}), .i1({rd_data_o[1],rd_flags_o[1],rd_ready_o[1]}), .i2({rd_data_o[2],rd_flags_o[2],rd_ready_o[2]}), .i3({rd_data_o[3],rd_flags_o[3],rd_ready_o[3]}), .i4({rd_data_o[4],rd_flags_o[4],rd_ready_o[4]}), .i5({rd_data_o[5],rd_flags_o[5],rd_ready_o[5]}), .i6({rd_data_o[6],rd_flags_o[6],rd_ready_o[6]}), .i7({rd_data_o[7],rd_flags_o[7],rd_ready_o[7]}), .o({rd2_data_o,rd2_flags_o,rd2_ready_o})); mux8 #(.WIDTH(37)) mux8_rd3(.en(~read_src[3][3]),.sel(read_src[3][2:0]), .i0({rd_data_o[0],rd_flags_o[0],rd_ready_o[0]}), .i1({rd_data_o[1],rd_flags_o[1],rd_ready_o[1]}), .i2({rd_data_o[2],rd_flags_o[2],rd_ready_o[2]}), .i3({rd_data_o[3],rd_flags_o[3],rd_ready_o[3]}), .i4({rd_data_o[4],rd_flags_o[4],rd_ready_o[4]}), .i5({rd_data_o[5],rd_flags_o[5],rd_ready_o[5]}), .i6({rd_data_o[6],rd_flags_o[6],rd_ready_o[6]}), .i7({rd_data_o[7],rd_flags_o[7],rd_ready_o[7]}), .o({rd3_data_o,rd3_flags_o,rd3_ready_o})); assign sys_int_o = (|error) | (|done); endmodule // buffer_pool