#define MASTER_CLK_RATE 100000000 // 100 MHz
////////////////////////////////////////////////////////////////
//
// Memory map for embedded wishbone bus
//
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
// Main RAM, Slave 0
#define RAM_BASE 0x0000
////////////////////////////////////////////////////////////////
// Packet Router RAM, Slave 1
//
// The buffers themselves are located in Slave 1, Packet Router RAM.
// The status registers are in Slave 5, Packet Router Status.
// The control register is in Slave 7, Settings Bus.
#define ROUTER_RAM_BASE 0x8000
#define RAM_NLINES 0x0200 // number of 32-bit lines in a buffer
#define _router_ram ((uint32_t *) ROUTER_RAM_BASE)
#define router_ram(n) (&_router_ram[(n) * RAM_NLINES])
/////////////////////////////////////////////////////
// SPI Core, Slave 2. See core docs for more info
#define SPI_BASE 0xC000 // Base address (16-bit)
typedef struct {
volatile uint32_t txrx0;
volatile uint32_t txrx1;
volatile uint32_t txrx2;
volatile uint32_t txrx3;
volatile uint32_t ctrl;
volatile uint32_t div;
volatile uint32_t ss;
} spi_regs_t;
#define spi_regs ((spi_regs_t *) SPI_BASE)
// Masks for controlling different peripherals
#define SPI_SS_AD9510 1
#define SPI_SS_AD9777 2
#define SPI_SS_RX_DAC 4
#define SPI_SS_RX_ADC 8
#define SPI_SS_RX_DB 16
#define SPI_SS_TX_DAC 32
#define SPI_SS_TX_ADC 64
#define SPI_SS_TX_DB 128
#define SPI_SS_ADS64P44 256
// Masks for different parts of CTRL reg
#define SPI_CTRL_ASS (1<<13)
#define SPI_CTRL_IE (1<<12)
#define SPI_CTRL_LSB (1<<11)
#define SPI_CTRL_TXNEG (1<<10)
#define SPI_CTRL_RXNEG (1<< 9)
#define SPI_CTRL_GO_BSY (1<< 8)
#define SPI_CTRL_CHAR_LEN_MASK 0x7F
////////////////////////////////////////////////
// I2C, Slave 3
// See Wishbone I2C-Master Core Specification.
#define I2C_BASE 0xC400
typedef struct {
volatile uint32_t prescaler_lo; // r/w
volatile uint32_t prescaler_hi; // r/w
volatile uint32_t ctrl; // r/w
volatile uint32_t data; // wr = transmit reg; rd = receive reg
volatile uint32_t cmd_status; // wr = command reg; rd = status reg
} i2c_regs_t;
#define i2c_regs ((i2c_regs_t *) I2C_BASE)
#define I2C_CTRL_EN (1 << 7) // core enable
#define I2C_CTRL_IE (1 << 6) // interrupt enable
//
// STA, STO, RD, WR, and IACK bits are cleared automatically
//
#define I2C_CMD_START (1 << 7) // generate (repeated) start condition
#define I2C_CMD_STOP (1 << 6) // generate stop condition
#define I2C_CMD_RD (1 << 5) // read from slave
#define I2C_CMD_WR (1 << 4) // write to slave
#define I2C_CMD_NACK (1 << 3) // when a rcvr, send ACK (ACK=0) or NACK (ACK=1)
#define I2C_CMD_RSVD_2 (1 << 2) // reserved
#define I2C_CMD_RSVD_1 (1 << 1) // reserved
#define I2C_CMD_IACK (1 << 0) // set to clear pending interrupt
#define I2C_ST_RXACK (1 << 7) // Received acknowledgement from slave (1 = NAK, 0 = ACK)
#define I2C_ST_BUSY (1 << 6) // 1 after START signal detected; 0 after STOP signal detected
#define I2C_ST_AL (1 << 5) // Arbitration lost. 1 when core lost arbitration
#define I2C_ST_RSVD_4 (1 << 4) // reserved
#define I2C_ST_RSVD_3 (1 << 3) // reserved
#define I2C_ST_RSVD_2 (1 << 2) // reserved
#define I2C_ST_TIP (1 << 1) // Transfer-in-progress
#define I2C_ST_IP (1 << 0) // Interrupt pending
////////////////////////////////////////////////
// GPIO, Slave 4
//
// These go to the daughterboard i/o pins
#define GPIO_BASE 0xC800
typedef struct {
volatile uint32_t io; // tx data in high 16, rx in low 16
volatile uint32_t ddr; // 32 bits, 1 means output. tx in high 16, rx in low 16
volatile uint32_t tx_sel; // 16 2-bit fields select which source goes to TX DB
volatile uint32_t rx_sel; // 16 2-bit fields select which source goes to RX DB
} gpio_regs_t;
// each 2-bit sel field is layed out this way
#define GPIO_SEL_SW 0 // if pin is an output, set by software in the io reg
#define GPIO_SEL_ATR 1 // if pin is an output, set by ATR logic
#define GPIO_SEL_DEBUG_0 2 // if pin is an output, debug lines from FPGA fabric
#define GPIO_SEL_DEBUG_1 3 // if pin is an output, debug lines from FPGA fabric
#define gpio_base ((gpio_regs_t *) GPIO_BASE)
///////////////////////////////////////////////////
// Packet Router Status, Slave 5
//
// The buffers themselves are located in Slave 1, Packet Router RAM.
// The status registers are in Slave 5, Packet Router Status.
// The control register is in Slave 7, Settings Bus.
#define ROUTER_STATUS_BASE 0xCC00
typedef struct {
volatile uint32_t _padding[8];
volatile uint32_t status;
volatile uint32_t hw_config; // see below
volatile uint32_t dummy[3];
volatile uint32_t irqs;
volatile uint32_t pri_enc_bp_status;
volatile uint32_t cycle_count;
} router_status_t;
#define router_status ((router_status_t *) ROUTER_STATUS_BASE)
// The hw_config register
#define HWC_SIMULATION 0x80000000
#define HWC_WB_CLK_DIV_MASK 0x0000000f
/*!
* \brief return non-zero if we're running under the simulator
*/
inline static int
hwconfig_simulation_p(void)
{
return router_status->hw_config & HWC_SIMULATION;
}
/*!
* \brief Return Wishbone Clock divisor.
* The processor runs at the Wishbone Clock rate which is MASTER_CLK_RATE / divisor.
*/
inline static int
hwconfig_wishbone_divisor(void)
{
return router_status->hw_config & HWC_WB_CLK_DIV_MASK;
}
///////////////////////////////////////////////////
// Ethernet Core, Slave 6
#define ETH_BASE 0xD000
#include "eth_mac_regs.h"
#define eth_mac ((eth_mac_regs_t *) ETH_BASE)
////////////////////////////////////////////////////
// Settings Bus, Slave #7, Not Byte Addressable!
//
// Output-only from processor point-of-view.
// 1KB of address space (== 256 32-bit write-only regs)
#define MISC_OUTPUT_BASE 0xD400
#define TX_PROTOCOL_ENGINE_BASE 0xD480
#define RX_PROTOCOL_ENGINE_BASE 0xD4C0
#define ROUTER_CTRL_BASE 0xD500
#define LAST_SETTING_REG 0xD7FC // last valid setting register
#define SR_MISC 0
#define SR_TX_PROT_ENG 32
#define SR_RX_PROT_ENG 48
#define SR_ROUTER_CTRL 64
#define SR_UDP_SM 96
#define SR_TX_DSP 208
#define SR_TX_CTRL 224
#define SR_RX_DSP 160
#define SR_RX_CTRL 176
#define SR_TIME64 192
#define SR_SIMTIMER 198
#define SR_LAST 255
#define _SR_ADDR(sr) (MISC_OUTPUT_BASE + (sr) * sizeof(uint32_t))
// --- packet router control regs ---
typedef struct {
volatile uint32_t mode_ctrl;
volatile uint32_t ip_addr;
volatile uint32_t data_ports; //dsp0 (low 16) dsp1 (high 16)
volatile uint32_t iface_ctrl;
} router_ctrl_t;
#define router_ctrl ((router_ctrl_t *) ROUTER_CTRL_BASE)
// --- misc outputs ---
typedef struct {
volatile uint32_t clk_ctrl;
volatile uint32_t serdes_ctrl;
volatile uint32_t adc_ctrl;
volatile uint32_t leds;
volatile uint32_t phy_ctrl; // LSB is reset line to eth phy
volatile uint32_t debug_mux_ctrl;
volatile uint32_t ram_page; // FIXME should go somewhere else...
volatile uint32_t flush_icache; // Flush the icache
volatile uint32_t led_src; // HW or SW control for LEDs
} output_regs_t;
#define CLK_RESET (1<<4)
#define CLK_ENABLE (1<<3) | (1<<2)
#define CLK_SEL (1<<1) | (1<<0)
#define SERDES_ENABLE 8
#define SERDES_PRBSEN 4
#define SERDES_LOOPEN 2
#define SERDES_RXEN 1
#define ADC_CTRL_ON 0x0F
#define ADC_CTRL_OFF 0x00
// crazy order that matches the labels on the case
#define LED_A (1 << 4)
#define LED_B (1 << 1)
#define LED_C (1 << 3)
#define LED_D (1 << 0)
#define LED_E (1 << 2)
// LED_F // controlled by CPLD
#define LED_RJ45 (1 << 5)
#define output_regs ((output_regs_t *) MISC_OUTPUT_BASE)
// --- udp tx regs ---
typedef struct {
// Bits 19:16 are control info; bits 15:0 are data (see below)
// First two words are unused.
volatile uint32_t _nope[2];
//--- ethernet header - 14 bytes---
volatile struct{
uint32_t mac_dst_0_1; //word 2
uint32_t mac_dst_2_3;
uint32_t mac_dst_4_5;
uint32_t mac_src_0_1;
uint32_t mac_src_2_3;
uint32_t mac_src_4_5;
uint32_t ether_type; //word 8
} eth_hdr;
//--- ip header - 20 bytes ---
volatile struct{
uint32_t ver_ihl_tos; //word 9
uint32_t total_length;
uint32_t identification;
uint32_t flags_frag_off;
uint32_t ttl_proto;
uint32_t checksum;
uint32_t src_addr_high;
uint32_t src_addr_low;
uint32_t dst_addr_high;
uint32_t dst_addr_low; //word 18
} ip_hdr;
//--- udp header - 8 bytes ---
volatile struct{
uint32_t src_port; //word 19
uint32_t dst_port;
uint32_t length;
uint32_t checksum; //word 22
} udp_hdr;
volatile uint32_t _pad[1];
volatile uint32_t dsp0_port;
volatile uint32_t err0_port;
volatile uint32_t dsp1_port;
volatile uint32_t err1_port;
} sr_udp_sm_t;
// control bits (all expect UDP_SM_LAST_WORD are mutually exclusive)
// Insert a UDP source port from the table
#define UDP_SM_INS_UDP_SRC_PORT (1 << 21)
// Insert a UDP dest port from the table
#define UDP_SM_INS_UDP_DST_PORT (1 << 20)
// This is the last word of the header
#define UDP_SM_LAST_WORD (1 << 19)
// Insert IP header checksum here. Data is the xor of 16'hFFFF and
// the values written into regs 9-13 and 15-18.
#define UDP_SM_INS_IP_HDR_CHKSUM (1 << 18)
// Insert IP Length here (data ignored)
#define UDP_SM_INS_IP_LEN (1 << 17)
// Insert UDP Length here (data ignore)
#define UDP_SM_INS_UDP_LEN (1 << 16)
#define sr_udp_sm ((sr_udp_sm_t *) _SR_ADDR(SR_UDP_SM))
// --- dsp tx regs ---
#define MIN_CIC_INTERP 1
#define MAX_CIC_INTERP 128
typedef struct {
volatile uint32_t num_chan;
volatile uint32_t clear_state; // clears out state machine, fifos,
volatile uint32_t report_sid;
volatile uint32_t policy;
volatile uint32_t cyc_per_up;
volatile uint32_t packets_per_up;
} sr_tx_ctrl_t;
#define sr_tx_ctrl ((sr_tx_ctrl_t *) _SR_ADDR(SR_TX_CTRL))
typedef struct {
volatile int32_t freq;
volatile uint32_t scale_iq; // {scale_i,scale_q}
volatile uint32_t interp_rate;
volatile uint32_t _padding0; // padding for the tx_mux
// NOT freq, scale, interp
/*!
* \brief output mux configuration.
*
*
* 3 2 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-------------------------------+-------+-------+-------+-------+
* | | DAC1 | DAC0 |
* +-------------------------------+-------+-------+-------+-------+
*
* There are N DUCs (1 now) with complex inputs and outputs.
* There are two DACs.
*
* Each 4-bit DACx field specifies the source for the DAC
* Each subfield is coded like this:
*
* 3 2 1 0
* +-------+
* | N |
* +-------+
*
* N specifies which DUC output is connected to this DAC.
*
* N which interp output
* --- -------------------
* 0 DUC 0 I
* 1 DUC 0 Q
* 2 DUC 1 I
* 3 DUC 1 Q
* F All Zeros
*
* The default value is 0x10
*
*/
volatile uint32_t tx_mux;
} dsp_tx_regs_t;
#define dsp_tx_regs ((dsp_tx_regs_t *) _SR_ADDR(SR_TX_DSP))
// --- VITA RX CTRL regs ---
typedef struct {
// The following 3 are logically a single command register.
// They are clocked into the underlying fifo when time_ticks is written.
volatile uint32_t cmd; // {now, chain, num_samples(30)
volatile uint32_t time_secs;
volatile uint32_t time_ticks;
volatile uint32_t clear_overrun; // write anything to clear overrun
volatile uint32_t vrt_header; // word 0 of packet. FPGA fills in packet counter
volatile uint32_t vrt_stream_id; // word 1 of packet.
volatile uint32_t vrt_trailer;
volatile uint32_t nsamples_per_pkt;
volatile uint32_t nchannels; // 1 in basic case, up to 4 for vector sources
volatile uint32_t pad[7]; // Make each structure 16 elements long
} sr_rx_ctrl_t;
#define sr_rx_ctrl ((sr_rx_ctrl_t *) _SR_ADDR(SR_RX_CTRL))
// --- dsp rx regs ---
#define MIN_CIC_DECIM 1
#define MAX_CIC_DECIM 128
typedef struct {
volatile int32_t freq;
volatile uint32_t scale_iq; // {scale_i,scale_q}
volatile uint32_t decim_rate;
volatile uint32_t dcoffset_i; // Bit 31 high sets fixed offset mode, using lower 14 bits,
// otherwise it is automatic
volatile uint32_t dcoffset_q; // Bit 31 high sets fixed offset mode, using lower 14 bits
/*!
* \brief input mux configuration.
*
* This determines which ADC (or constant zero) is connected to
* each DDC input. There are N DDCs (1 now). Each has two inputs.
*
*
* Mux value:
*
* 3 2 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-------+-------+-------+-------+-------+-------+-------+-------+
* | |Q0 |I0 |
* +-------+-------+-------+-------+-------+-------+-------+-------+
*
* Each 2-bit I field is either 00 (A/D A), 01 (A/D B) or 1X (const zero)
* Each 2-bit Q field is either 00 (A/D A), 01 (A/D B) or 1X (const zero)
*
* The default value is 0x4
*
*/
volatile uint32_t rx_mux; // called adc_mux in dsp_core_rx.v
/*!
* \brief Streaming GPIO configuration
*
* This determines whether the LSBs of I and Q samples come from the DSP
* pipeline or from the io_rx GPIO pins. To stream GPIO, one must first
* set the GPIO data direction register to have io_rx[15] and/or io_rx[14]
* configured as inputs. The GPIO pins will be sampled at the time the
* remainder of the DSP sample is strobed into the RX sample FIFO. There
* will be a decimation-dependent fixed time offset between the GPIO
* sample stream and the associated RF samples.
*
* 3 2 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-------+-------+-------+-------+-------+-------+-------+-------+
* | MBZ |Q|I|
* +-------+-------+-------+-------+-------+-------+-------+-------+
*
* I 0=LSB comes from DSP pipeline (default)
* 1=LSB comes from io_rx[15]
*
* Q 0=LSB comes from DSP pipeline (default)
* 1=LSB comes from io_rx[14]
*/
volatile uint32_t gpio_stream_enable;
} dsp_rx_regs_t;
#define dsp_rx_regs ((dsp_rx_regs_t *) _SR_ADDR(SR_RX_DSP))
// ----------------------------------------------------------------
// VITA49 64 bit time (write only)
/*!
* \brief Time 64 flags
*
*
*
* 3 2 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------------------------------------------------------+-+-+
* | |S|P|
* +-----------------------------------------------------------+-+-+
*
* P - PPS edge selection (0=negedge, 1=posedge, default=0)
* S - Source (0=sma, 1=mimo, 0=default)
*
*
*/
typedef struct {
volatile uint32_t secs; // value to set absolute secs to on next PPS
volatile uint32_t ticks; // value to set absolute ticks to on next PPS
volatile uint32_t flags; // flags - see chart above
volatile uint32_t imm; // set immediate (0=latch on next pps, 1=latch immediate, default=0)
} sr_time64_t;
#define sr_time64 ((sr_time64_t *) _SR_ADDR(SR_TIME64))
/*
* --- ethernet tx protocol engine regs (write only) ---
*
* These registers control the transmit portion of the ethernet
* protocol engine (out of USRP2). The protocol engine handles fifo
* status and sequence number insertion in outgoing packets, and
* automagically generates status packets when required to inform the
* host of changes in fifo availability.
*
* All outgoing packets have their fifo_status field set to the number
* of 32-bit lines of fifo available in the ethernet Rx fifo (see
* usrp2_eth_packet.h). Seqno's are set if FIXME, else 0.
*
* FIXME clean this up once we know how it's supposed to behave.
*/
typedef struct {
volatile uint32_t flags; // not yet fully defined (channel?)
volatile uint32_t mac_dst0123; // 4 bytes of destination mac addr
volatile uint32_t mac_dst45src01; // 2 bytes of dest mac addr; 2 bytes of src mac addr
volatile uint32_t mac_src2345; // 4 bytes of destination mac addr
volatile uint32_t seqno; // Write to init seqno. It autoincs on match
} tx_proto_engine_regs_t;
#define tx_proto_engine ((tx_proto_engine_regs_t *) TX_PROTOCOL_ENGINE_BASE)
/*
* --- ethernet rx protocol engine regs (write only) ---
*
* These registers control the receive portion of the ethernet
* protocol engine (into USRP2). The protocol engine offloads common
* packet inspection operations so that firmware has less to do on
* "fast path" packets.
*
* The registers define conditions which must be matched for a packet
* to be considered a "fast path" packet. If a received packet
* matches the src and dst mac address, ethertype, flags field, and
* expected seqno number it is considered a "fast path" packet, and
* the expected seqno is updated. If the packet fails to satisfy any
* of the above conditions it's a "slow path" packet, and the
* corresponding SLOWPATH flag will be set buffer_status register.
*/
typedef struct {
volatile uint32_t flags; // not yet fully defined (channel?)
volatile uint32_t mac_dst0123; // 4 bytes of destination mac addr
volatile uint32_t mac_dst45src01; // 2 bytes of dest mac addr; 2 bytes of src mac addr
volatile uint32_t mac_src2345; // 4 bytes of destination mac addr
volatile uint32_t ethertype_pad; // ethertype in high 16-bits
} rx_proto_engine_regs_t;
#define rx_proto_engine ((rx_proto_engine_regs_t *) RX_PROTOCOL_ENGINE_BASE)
///////////////////////////////////////////////////
// Simple Programmable Interrupt Controller, Slave 8
#define PIC_BASE 0xD800
// Interrupt request lines
// Bit numbers (LSB == 0) that correpond to interrupts into PIC
#define IRQ_BUFFER 0 // buffer manager
#define IRQ_ONETIME 1
#define IRQ_SPI 2
#define IRQ_I2C 3
#define IRQ_PHY 4 // ethernet PHY
#define IRQ_UNDERRUN 5
#define IRQ_OVERRUN 6
#define IRQ_PPS 7 // pulse per second
#define IRQ_UART_RX 8
#define IRQ_UART_TX 9
#define IRQ_SERDES 10
#define IRQ_CLKSTATUS 11
#define IRQ_PERIODIC 12
#define IRQ_TO_MASK(x) (1 << (x))
#define PIC_BUFFER_INT IRQ_TO_MASK(IRQ_BUFFER)
#define PIC_ONETIME_INT IRQ_TO_MASK(IRQ_ONETIME)
#define PIC_SPI_INT IRQ_TO_MASK(IRQ_SPI)
#define PIC_I2C_INT IRQ_TO_MASK(IRQ_I2C)
#define PIC_PHY_INT IRQ_TO_MASK(IRQ_PHY)
#define PIC_UNDERRUN_INT IRQ_TO_MASK(IRQ_UNDERRUN)
#define PIC_OVERRUN_INT IRQ_TO_MASK(IRQ_OVERRUN)
#define PIC_PPS_INT IRQ_TO_MASK(IRQ_PPS)
#define PIC_UART_RX_INT IRQ_TO_MASK(IRQ_UART_RX)
#define PIC_UART_TX_INT IRQ_TO_MASK(IRQ_UART_TX)
#define PIC_SERDES IRQ_TO_MASK(IRQ_SERDES)
#define PIC_CLKSTATUS IRQ_TO_MASK(IRQ_CLKSTATUS)
typedef struct {
volatile uint32_t edge_enable; // mask: 1 -> edge triggered, 0 -> level
volatile uint32_t polarity; // mask: 1 -> rising edge
volatile uint32_t mask; // mask: 1 -> disabled
volatile uint32_t pending; // mask: 1 -> pending; write 1's to clear pending ints
} pic_regs_t;
#define pic_regs ((pic_regs_t *) PIC_BASE)
// ----------------------------------------------------------------
// WB_CLK_RATE is the time base for this
typedef struct {
volatile uint32_t onetime; // Number of wb clk cycles till the onetime interrupt
volatile uint32_t periodic; // Repeat rate of periodic interrupt
} sr_simple_timer_t;
#define sr_simple_timer ((sr_simple_timer_t *) _SR_ADDR(SR_SIMTIMER))
///////////////////////////////////////////////////
// UART, Slave 10
#define UART_BASE 0xE000
typedef struct {
// All elements are 8 bits except for clkdiv (16), but we use uint32 to make
// the hardware for decoding easier
volatile uint32_t clkdiv; // Set to 50e6 divided by baud rate (no x16 factor)
volatile uint32_t txlevel; // Number of spaces in the FIFO for writes
volatile uint32_t rxlevel; // Number of available elements in the FIFO for reads
volatile uint32_t txchar; // Write characters to be sent here
volatile uint32_t rxchar; // Read received characters here
} uart_regs_t;
#define uart_regs ((uart_regs_t *) UART_BASE)
///////////////////////////////////////////////////
// ATR Controller, Slave 11
#define ATR_BASE 0xE400
typedef struct {
volatile uint32_t v[16];
} atr_regs_t;
#define ATR_IDLE 0x0 // indicies into v
#define ATR_TX 0x1
#define ATR_RX 0x2
#define ATR_FULL 0x3
#define atr_regs ((atr_regs_t *) ATR_BASE)
///////////////////////////////////////////////////
// SD Card SPI interface, Slave 13
// All regs are 8 bits wide, but are accessed as if they are 32 bits
#define SDSPI_BASE 0xEC00
typedef struct {
volatile uint32_t status; // Write a 1 or 0 for controlling CS
volatile uint32_t clkdiv;
volatile uint32_t send_dat;
volatile uint32_t receive_dat;
} sdspi_regs_t;
#define sdspi_regs ((sdspi_regs_t *) SDSPI_BASE)
///////////////////////////////////////////////////
// External RAM interface, Slave 14
// Pages are 1K. Page is 10 bits, set by a control register
// output_regs->ram_page
#define EXTRAM_BASE 0xF000
#define extram ((volatile uint32_t *) EXTRAM_BASE)
///////////////////////////////////////////////////
#endif