/* * Copyright 2007,2009 Free Software Foundation, Inc. * Copyright 2009 Ettus Research LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "../x300/x300_defs.h" #include "ethernet.h" #include "mdelay.h" #include "printf.h" #include "wb_i2c.h" #include "wb_utils.h" //#include "memory_map.h" //#include "eth_phy.h" //#include "pic.h" //#include "hal_io.h" //#include "nonstdio.h" #include <stdint.h> #include <stdbool.h> #include "xge_phy.h" #include "xge_mac.h" #include <u3_net_stack.h> #define VERBOSE 0 #define NETHS 2 // # of ethernet interfaces static bool links_up[NETHS] = {}; //////////////////////////////////////////////////////////////////////// // // 10 Gig Ethernet MAC. // typedef struct { volatile uint32_t config; // WO volatile uint32_t int_pending; // Clear-on-read volatile uint32_t int_status; // RO volatile uint32_t int_mask; // RW volatile uint32_t mdio_data; volatile uint32_t mdio_addr; volatile uint32_t mdio_op; volatile uint32_t mdio_control; volatile uint32_t gpio; } xge_regs_t; #define xge_regs ((xge_regs_t *) base) #define SFPP_STATUS_MODABS_CHG (1 << 5) // Has MODABS changed since last read? #define SFPP_STATUS_TXFAULT_CHG (1 << 4) // Has TXFAULT changed since last read? #define SFPP_STATUS_RXLOS_CHG (1 << 3) // Has RXLOS changed since last read? #define SFPP_STATUS_MODABS (1 << 2) // MODABS state #define SFPP_STATUS_TXFAULT (1 << 1) // TXFAULT state #define SFPP_STATUS_RXLOS (1 << 0) // RXLOS state int ethernet_ninterfaces(void) { return NETHS; } //////////////////////////////////////////////////////////////////////// // // Clause 45 MDIO used for 10Gig Ethernet has two bus transactions to complete a transfer. // An initial transaction sets up the address, and a subsequent one transfers the read or write data. // static uint32_t xge_read_mdio(const uint32_t base, const uint32_t address, const uint32_t device, const uint32_t port) { // Set register address each iteration xge_regs->mdio_addr = address; // Its a clause 45 device. We want to ADDRESS xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE45) | XGE_MDIO_OP(MDIO_ADDRESS) | XGE_MDIO_ADDR(port) | XGE_MDIO_MMD(device); // Start MDIO bus transaction xge_regs->mdio_control = 1; // Wait until bus transaction complete while (xge_regs->mdio_control == 1); // Its a clause 45 device. We want to READ xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE45) | XGE_MDIO_OP(MDIO_READ) | XGE_MDIO_ADDR(port) | XGE_MDIO_MMD(device); // Start MDIO bus transaction xge_regs->mdio_control = 1; // Wait until bus transaction complete while (xge_regs->mdio_control == 1); // Read MDIO data return(xge_regs->mdio_data); } static void xge_write_mdio(const uint32_t base, const uint32_t address, const uint32_t device, const uint32_t port, const uint32_t data) { // Set register address each iteration xge_regs->mdio_addr = address; // Its a clause 45 device. We want to ADDRESS xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE45) | XGE_MDIO_OP(MDIO_ADDRESS) | XGE_MDIO_ADDR(port) | XGE_MDIO_MMD(device); // Start MDIO bus transaction xge_regs->mdio_control = 1; // Wait until bus transaction complete while (xge_regs->mdio_control == 1); // Write new value to mdio_write_data reg. xge_regs->mdio_data = data; // Its a clause 45 device. We want to WRITE xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE45) | XGE_MDIO_OP(MDIO_WRITE) | XGE_MDIO_ADDR(port) | XGE_MDIO_MMD(device); // Start MDIO bus transaction xge_regs->mdio_control = 1; // Wait until bus transaction complete while (xge_regs->mdio_control == 1); } //////////////////////////////////////////////////////////////////////// // // Clause 22 MDIO used for 1Gig Ethernet has one bus transaction to complete a transfer. // static uint32_t ge_read_mdio(const uint32_t base, const uint32_t address, const uint32_t port) { // Its a clause 22 device. We want to READ xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE22) | XGE_MDIO_OP(MDIO_C22_READ) | XGE_MDIO_ADDR(port) | address; // Start MDIO bus transaction xge_regs->mdio_control = 1; // Wait until bus transaction complete while (xge_regs->mdio_control == 1); // Read MDIO data return(xge_regs->mdio_data); } static void ge_write_mdio(const uint32_t base, const uint32_t address, const uint32_t port, const uint32_t data) { // Write new value to mdio_write_data reg. xge_regs->mdio_data = data; // Its a clause 22 device. We want to WRITE xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE22) | XGE_MDIO_OP(MDIO_C22_WRITE) | XGE_MDIO_ADDR(port) | address; // Start MDIO bus transaction xge_regs->mdio_control = 1; // Wait until bus transaction complete while (xge_regs->mdio_control == 1); } //////////////////////////////////////////////////////////////////////// // // Read and write MDIO independent of type // static uint32_t read_mdio(const uint8_t eth, const uint32_t address, const uint32_t device, const uint32_t port) { const uint32_t rb_addr = (eth==0) ? RB_ETH_TYPE0 : RB_ETH_TYPE1; const uint32_t base = (eth==0) ? XGE0_BASE : XGE1_BASE; if (wb_peek32(SR_ADDR(RB0_BASE, rb_addr)) != 0) { return xge_read_mdio(base, address, device, port); } else { return ge_read_mdio(base, address, port); } } static void write_mdio(const uint8_t eth, const uint32_t address, const uint32_t device, const uint32_t port, const uint32_t data) { const uint32_t rb_addr = (eth==0) ? RB_ETH_TYPE0 : RB_ETH_TYPE1; const uint32_t base = (eth==0) ? XGE0_BASE : XGE1_BASE; if (wb_peek32(SR_ADDR(RB0_BASE, rb_addr)) != 0) { return xge_write_mdio(base, address, device, port, data); } else { return ge_write_mdio(base, address, port, data); } } //////////////////////////////////////////////////////////////////////// // // Read an 8-bit word from a device attached to the PHY's i2c bus. // static int xge_i2c_rd(const uint32_t base, const uint8_t i2c_dev_addr, const uint8_t i2c_word_addr) { uint8_t buf; // IJB. CHECK HERE FOR MODET. Bail immediately if no module // SFF-8472 defines a hardcoded bus address of 0xA0, an 8bit internal address and a register map. // Write the random access address to the SPF module if (wb_i2c_write(base, i2c_dev_addr, &i2c_word_addr, 1) == false) return(-1); // Now read back a byte of data if (wb_i2c_read(base, i2c_dev_addr, &buf, 1) == false) return(-1); return((int) buf); } //////////////////////////////////////////////////////////////////////// // // Read identity of SFP+ module for XGE PHY // // (base is i2c controller) static int xge_read_sfpp_type(const uint32_t base, const uint32_t delay_ms) { int x; // Delay read of SFPP if (delay_ms) mdelay(delay_ms); // Read ID code from SFP x = xge_i2c_rd(base, MODULE_DEV_ADDR, 3); // I2C Error? if (x < 0) { printf("DEBUG: I2C error in SFPP_TYPE.\n"); return x; } // Decode module type. These registers and values are defined in SFF-8472 if (x & 0x01) // Active 1X Infinband Copper { goto twinax; } if (x & 0x10) { printf("DEBUG: SFFP_TYPE_SR.\n"); return SFFP_TYPE_SR; } if (x & 0x20) { printf("DEBUG: SFFP_TYPE_LR.\n"); return SFFP_TYPE_LR; } if (x & 0x40) { printf("DEBUG: SFFP_TYPE_LRM.\n"); return SFFP_TYPE_LRM; } // Search for legacy 1000-Base SFP types x = xge_i2c_rd(base, MODULE_DEV_ADDR, 0x6); if (x < 0) { printf("DEBUG: I2C error in SFPP_TYPE.\n"); return x; } if (x & 0x01) { printf("DEBUG: SFFP_TYPE_1000BASE_SX.\n"); return SFFP_TYPE_1000BASE_SX; } if (x & 0x02) { printf("DEBUG: SFFP_TYPE_1000BASE_LX.\n"); return SFFP_TYPE_1000BASE_LX; } if (x & 0x08) { printf("DEBUG: SFFP_TYPE_1000BASE_T.\n"); return SFFP_TYPE_1000BASE_T; } // Not one of the standard optical types..now try to deduce if it's twinax aka 10GSFP+CU // which is not covered explicitly in SFF-8472 x = xge_i2c_rd(base, MODULE_DEV_ADDR, 8); if (x < 0) { printf("DEBUG: I2C error in SFPP_TYPE.\n"); return x; } if ((x & 4) == 0) // Passive SFP+ cable type goto unknown; // x = xge_i2c_rd(MODULE_DEV_ADDR, 6); // printf("SFP+ reg6 read as %x\n",x); // if (x < 0) // return x; // if (x != 0x04) // Returns 1000Base-CX as Compliance code // goto unknown; x = xge_i2c_rd(base, MODULE_DEV_ADDR, 0xA); if (x < 0) { printf("DEBUG: I2C error in SFPP_TYPE.\n"); return x; } if (x & 0x80) { twinax: // Reports 1200 MBytes/sec fibre channel speed..close enough to 10G ethernet! x = xge_i2c_rd(base, MODULE_DEV_ADDR, 0x12); if (x < 0) { printf("DEBUG: I2C error in SFPP_TYPE.\n"); return x; } printf("DEBUG: TwinAx.\n"); // If cable length support is greater than 10M then pick correct type return x > 10 ? SFFP_TYPE_TWINAX_LONG : SFFP_TYPE_TWINAX; } unknown: printf("DEBUG: Unknown SFP+ type.\n"); // Not a supported Module type return SFFP_TYPE_UNKNOWN; } // Pull reset line low for 100ms then release and wait 100ms static void xge_hard_phy_reset(const uint32_t base) { wb_poke32(base, 1); mdelay(100); wb_poke32(base, 0); mdelay(100); } static void xge_mac_init(const uint32_t base) { printf("INFO: Begining XGE MAC init sequence.\n"); xge_regs->config = XGE_TX_ENABLE; } // base is pointer to XGE MAC on Wishbone. static void xge_phy_init(const uint8_t eth, const uint32_t mdio_port) { int x; // Read LASI Ctrl register to capture state. //y = xge_read_mdio(0x9002,XGE_MDIO_DEVICE_PMA,XGE_MDIO_ADDR_PHY_A); printf("INFO: Begining XGE PHY init sequence.\n"); // Software reset x = read_mdio(eth, 0x0, XGE_MDIO_DEVICE_PMA,mdio_port); x = x | (1 << 15); write_mdio(eth, 0x0,XGE_MDIO_DEVICE_PMA,mdio_port,x); while(x&(1<<15)) x = read_mdio(eth, 0x0,XGE_MDIO_DEVICE_PMA,mdio_port); } void xge_poll_sfpp_status(const uint32_t eth) { uint32_t x; // Has MODDET/MODAbS changed since we last looked? x = wb_peek32(SR_ADDR(RB0_BASE, (eth==0) ? RB_SFPP_STATUS0 : RB_SFPP_STATUS1 )); if (x & SFPP_STATUS_RXLOS_CHG) printf("DEBUG: eth%1d RXLOS changed state: %d\n", eth, x & SFPP_STATUS_RXLOS); if (x & SFPP_STATUS_TXFAULT_CHG) printf("DEBUG: eth%1d TXFAULT changed state: %d\n", eth,(x & SFPP_STATUS_TXFAULT) >> 1 ); if (x & SFPP_STATUS_MODABS_CHG) printf("DEBUG: eth%1d MODABS changed state: %d\n", eth, (x & SFPP_STATUS_MODABS) >> 2); if (x & (SFPP_STATUS_RXLOS_CHG|SFPP_STATUS_TXFAULT_CHG|SFPP_STATUS_MODABS_CHG)) { if (( x & (SFPP_STATUS_RXLOS|SFPP_STATUS_TXFAULT|SFPP_STATUS_MODABS)) == 0) { if (wb_peek32(SR_ADDR(RB0_BASE, eth == 0 ? RB_ETH_TYPE0 : RB_ETH_TYPE1)) == 1) { xge_ethernet_init(eth); dump_mdio_regs((eth==0) ? XGE0_BASE : XGE1_BASE,MDIO_PORT); mdelay(100); dump_mdio_regs((eth==0) ? XGE0_BASE : XGE1_BASE,MDIO_PORT); mdelay(100); dump_mdio_regs((eth==0) ? XGE0_BASE : XGE1_BASE,MDIO_PORT); } } } if (x & SFPP_STATUS_MODABS_CHG) { // MODDET has changed state since last checked if (x & SFPP_STATUS_MODABS) { // MODDET is high, module currently removed. printf("INFO: An SFP+ module has been removed from eth port %d.\n", eth); } else { // MODDET is low, module currently inserted. // Return status. printf("INFO: A new SFP+ module has been inserted into eth port %d.\n", eth); xge_read_sfpp_type((eth==0) ? I2C0_BASE : I2C2_BASE,1); } } //update the link up status const bool old_link_up = links_up[eth]; links_up[eth] = ((read_mdio(eth, XGE_MDIO_STATUS1,XGE_MDIO_DEVICE_PMA,MDIO_PORT)) & (1 << 2)) != 0; //The link became up, send a GARP so everyone knows our mac/ip association if (!old_link_up && links_up[eth]) u3_net_stack_send_arp_request(eth, u3_net_stack_get_ip_addr(eth)); } void xge_ethernet_init(const uint32_t eth) { xge_mac_init((eth==0) ? XGE0_BASE : XGE1_BASE); //xge_hard_phy_reset(); xge_phy_init(eth ,MDIO_PORT); uint32_t x = wb_peek32(SR_ADDR(RB0_BASE, (eth==0) ? RB_SFPP_STATUS0 : RB_SFPP_STATUS1 )); printf(" eth%1d SFP initial state: RXLOS: %d TXFAULT: %d MODABS: %d\n", eth, x & SFPP_STATUS_RXLOS, (x & SFPP_STATUS_TXFAULT) >> 1, (x & SFPP_STATUS_MODABS) >> 2); } // // Debug code to verbosely read XGE MDIO registers below here. // void decode_reg(uint32_t address, uint32_t device, uint32_t data) { int x; printf("Device: "); printf("%x",device); printf(" "); switch(address) { case XGE_MDIO_CONTROL1: printf("CONTROL1: "); printf("%x",data); printf(" "); for (x=15; x >= 0 ; x--) if ((data & (1 << x)) != 0) // Bits set. switch(x) { case 15: printf("Reset,"); break; case 14: printf("Loopback,"); break; case 11: printf("Low Power Mode,"); break; case 5:case 4:case 3:case 2: printf("RESERVED speed value,"); break; case 0: printf("PMA loopback,"); break; } //else // Bits clear. //switch (x) { //case 13: case 6: printf(" None 10Gb/s speed set!"); break; //} printf(" \n"); break; case XGE_MDIO_STATUS1: printf("STATUS1: "); printf("%x",data); printf(" "); for (x=15; x >= 0 ; x--) if ((data & (1 << x)) != 0) // Bits set. switch(x) { case 7: printf("Fault Detected,"); break; case 2: printf("Link is Up,"); break; case 1: printf("Supports Low Power,"); break; } else // Bits Clear switch(x) { case 2: printf("Link is Down,"); break; } printf(" \n"); break; case XGE_MDIO_SPEED: printf("SPEED ABILITY: "); printf("%x",data); printf(" "); for (x=15; x >= 0 ; x--) if ((data & (1 << x)) != 0) // Bits set. switch(x) { case 15:case 14:case 13:case 12:case 11:case 10:case 9: case 8:case 7:case 6:case 5:case 4:case 3:case 2:case 1: printf("RESERVED bits set!,"); break; case 0: printf("Capable of 10Gb/s,"); } else // Bits clear. switch(x) { case 0: printf("Incapable of 10Gb/s,"); break; } printf(" \n"); break; case XGE_MDIO_DEVICES1: printf("DEVICES IN PACKAGE: "); printf("%x",data); printf(" "); for (x=15; x >= 0 ; x--) if ((data & (1 << x)) != 0) // Bits set. switch(x) { case 7: printf("Auto-Negotiation,"); break; case 6: printf("TC,"); break; case 5: printf("DTE XS,"); break; case 4: printf("PHY XS,"); break; case 3: printf("PCS,"); break; case 2: printf("WIS,"); break; case 1: printf("PMD/PMA,"); break; case 0: printf("Clause 22 registers,"); break; } printf(" \n"); break; case XGE_MDIO_DEVICES2: printf("DEVICES IN PACKAGE (cont): "); printf("%x",data); printf(" "); for (x=15; x >= 0 ; x--) if ((data & (1 << x)) != 0) // Bits set. switch(x) { case 15: printf("Vendor device 2,"); break; case 14: printf("Vendor device 1,"); break; case 13: printf("Clause 22 extension,"); break; } printf(" \n"); break; case XGE_MDIO_CONTROL2: printf("CONTROL2: "); printf("%x",data); printf(" "); // PMA/PMD if (device == XGE_MDIO_DEVICE_PMA) switch((data & 0xf)) { case 0xF: printf("10BASE-T,"); break; case 0xE: printf("100BASE-TX,"); break; case 0xD: printf("1000BASE-KX,"); break; case 0xC: printf("1000BASE-T,"); break; case 0xB: printf("10GBASE-KR,"); break; case 0xA: printf("10GBASE-KX4,"); break; case 0x9: printf("10GBASE-T,"); break; case 0x8: printf("10GBASE-LRM,"); break; case 0x7: printf("10GBASE-SR,"); break; case 0x6: printf("10GBASE-LR,"); break; case 0x5: printf("10GBASE-ER,"); break; case 0x4: printf("10GBASE-LX4,"); break; // case 0x3: printf("10GBASE-SW,"); break; // case 0x2: printf("10GBASE-LW,"); break; // case 0x1: printf("10GBASE-EW,"); break; case 0x0: printf("10GBASE-CX4,"); break; } else if (device == XGE_MDIO_DEVICE_PCS) // PCS switch((data & 0x3)) { case 0x3: printf("10GBASE-T PCS,"); break; case 0x2: printf("10GBASE-W PCS,"); break; case 0x1: printf("10GBASE-X PCS,"); break; case 0x0: printf("10GBASE-R PCS,"); break; } printf(" \n"); break; case XGE_MDIO_STATUS2: printf("STATUS2: "); printf("%x",data); printf(" "); for (x=15; x >= 0 ; x--) if ((data & (1 << x)) != 0) // Bits set. switch(x) { case 15: if ((data & (1 << 14)) == 0) printf("Device responding,"); break; case 13: if (device == XGE_MDIO_DEVICE_PMA) printf("Able detect a Tx fault,"); break; case 12: if (device == XGE_MDIO_DEVICE_PMA) printf("Able detect an Rx fault,"); break; case 11: printf("Fault on Tx path,"); break; case 10: printf("Fault on Rx path,"); break; case 9: if (device == XGE_MDIO_DEVICE_PMA) printf("Extended abilities in Reg1.11,"); break; case 8: if (device == XGE_MDIO_DEVICE_PMA) printf("Able to disable TX,"); break; case 7: if (device == XGE_MDIO_DEVICE_PMA) printf("10GBASE-SR,"); break; case 6: if (device == XGE_MDIO_DEVICE_PMA) printf("10GBASE-LR,"); break; case 5: if (device == XGE_MDIO_DEVICE_PMA) printf("10GBASE-ER,"); break; case 4: if (device == XGE_MDIO_DEVICE_PMA) printf("10GBASE-LX4,"); break; case 3: if (device == XGE_MDIO_DEVICE_PMA) printf("10GBASE-SW,"); break; case 2: if (device == XGE_MDIO_DEVICE_PMA) printf("10GBASE-LW,"); break; case 1: if (device == XGE_MDIO_DEVICE_PMA) printf("10GBASE-EW,"); break; case 0: if (device == XGE_MDIO_DEVICE_PMA) printf("loopback,"); break; } printf(" \n"); break; case XGE_MDIO_LANESTATUS: printf("LANE STATUS: "); printf("%x",data); printf(" "); for (x=15; x >= 0 ; x--) if ((data & (1 << x)) != 0) // Bits set. switch(x) { case 12: printf("Lanes aligned,"); break; case 11: printf("Able to generate test patterns,"); break; case 3: printf("Lane 3 synced,"); break; case 2: printf("Lane 2 synced,"); break; case 1: printf("Lane 1 synced,"); break; case 0: printf("Lane 0 synced,"); break; } else // Bits clear switch(x) { case 3: printf("Lane 3 not synced,"); break; case 2: printf("Lane 2 not synced,"); break; case 1: printf("Lane 1 not synced,"); break; case 0: printf("Lane 0 not synced,"); break; } printf(" \n"); break; case XILINX_CORE_VERSION: printf("XILINX CORE VERSION: %x ",data); printf("Version: %d.%d ",(data&0xf000)>>12,(data&0xf00)>>8); printf("Patch: %d ",(data&0xE)>>1); if (data&0x1) printf("Evaluation Version of core"); printf("\n"); break; default: printf("Register @ address: "); printf("%x",address); printf(" has value: "); printf("%x\n",data); break; } } void dump_mdio_regs(const uint8_t eth, uint32_t mdio_port) { volatile unsigned int x; int y; unsigned int regs_a[9] = {0,1,4,5,6,7,8,32,33}; unsigned int regs_b[10] = {0,1,4,5,6,7,8,10,11,65535}; printf("\n"); for (y = 0; y < 10; y++) { // Read MDIO data x = read_mdio(eth,regs_b[y],XGE_MDIO_DEVICE_PMA,mdio_port); decode_reg(regs_b[y],XGE_MDIO_DEVICE_PMA,x); } for (y = 0; y < 9; y++) { // Read MDIO data x = read_mdio(eth,regs_a[y],XGE_MDIO_DEVICE_PCS,mdio_port); decode_reg(regs_a[y],XGE_MDIO_DEVICE_PCS,x); } printf("\n"); /* for (y = 0; y < 8; y++) */ /* { */ /* // Read MDIO data */ /* x = xge_read_mdio(base,regs_a[y],XGE_MDIO_DEVICE_PHY_XS,mdio_port); */ /* decode_reg(regs_a[y],XGE_MDIO_DEVICE_PHY_XS,x); */ /* } */ /* for (y = 0; y < 8; y++) */ /* { */ /* // Read MDIO data */ /* x = xge_read_mdio(base,regs_a[y],XGE_MDIO_DEVICE_DTE_XS,mdio_port); */ /* decode_reg(regs_a[y],XGE_MDIO_DEVICE_DTE_XS,x); */ /* } */ } bool ethernet_get_link_up(const uint32_t eth) { return links_up[eth]; }