/*
* Copyright 2014 Ettus Research LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "octoclock/common.h"
#define wait() for(uint16_t u=4000; u; u--) asm("nop");
#define TIME_PASSED (TCNT1 > FIVE_SECONDS || (TIFR & _BV(TOV1)))
//States
static bool received_cmd = false;
static bool done_burning = false;
typedef struct {
uint16_t fw_len;
uint16_t fw_crc;
} crc_info_t;
static crc_info_t crc_info;
static void boot_program_page(uint8_t *buf, uint16_t page){
uint16_t i;
eeprom_busy_wait();
boot_page_erase(page);
boot_spm_busy_wait(); // Wait until the memory is erased.
for(i = 0; i < SPM_PAGESIZE; i += 2){
// Set up little-endian word.
uint16_t w = *buf++;
w += ((*buf++) << 8);
boot_page_fill(page + i, w);
}
boot_page_write(page); // Store buffer in flash page.
boot_spm_busy_wait(); // Wait until the memory is written.
// Reenable RWW-section again. We need this if we want to jump back
// to the application after bootloading.
boot_rww_enable();
}
static void read_firmware(uint16_t addr, octoclock_packet_t *pkt_out){
for(size_t i = 0; i < SPM_PAGESIZE; i++){
pkt_out->data[i] = pgm_read_byte(addr+i);
}
}
void handle_udp_query_packet(
struct socket_address src, struct socket_address dst,
unsigned char *payload, int payload_len
){
const octoclock_packet_t *pkt_in = (octoclock_packet_t*)payload;
//Respond to query packets
if(pkt_in->proto_ver == OCTOCLOCK_FW_COMPAT_NUM &&
pkt_in->code == OCTOCLOCK_QUERY_CMD){
octoclock_packet_t pkt_out;
pkt_out.proto_ver = OCTOCLOCK_BOOTLOADER_PROTO_VER;
pkt_out.sequence = pkt_in->sequence;
pkt_out.code = OCTOCLOCK_QUERY_ACK;
pkt_out.len = 0;
send_udp_pkt(OCTOCLOCK_UDP_CTRL_PORT, src, (void*)&pkt_out, sizeof(octoclock_packet_t));
}
}
static void calculate_crc(uint16_t *crc, uint16_t len){
*crc = 0xFFFF;
for(size_t i = 0; i < len; i++){
*crc ^= pgm_read_byte(i);
for(uint8_t j = 0; j < 8; ++j){
if(*crc & 1) *crc = (*crc >> 1) ^ 0xA001;
else *crc = (*crc >> 1);
}
}
}
static bool valid_app(){
crc_info_t crc_eeprom_info;
eeprom_read_block(&crc_eeprom_info, (void*)OCTOCLOCK_EEPROM_APP_LEN, 4);
calculate_crc(&(crc_info.fw_crc), crc_eeprom_info.fw_len);
return (crc_info.fw_crc == crc_eeprom_info.fw_crc);
}
void handle_udp_fw_packet(
struct socket_address src, struct socket_address dst,
unsigned char *payload, int payload_len
){
octoclock_packet_t *pkt_in = (octoclock_packet_t*)payload;
octoclock_packet_t pkt_out;
pkt_out.proto_ver = OCTOCLOCK_BOOTLOADER_PROTO_VER;
pkt_out.sequence = pkt_in->sequence;
pkt_out.len = 0;
switch(pkt_in->code){
case PREPARE_FW_BURN_CMD:
received_cmd = true;
done_burning = false;
crc_info.fw_len = pkt_in->len;
pkt_out.code = FW_BURN_READY_ACK;
break;
case FILE_TRANSFER_CMD:
boot_program_page(pkt_in->data, pkt_in->addr);
wait(); //Necessary for some reason
pkt_out.code = FILE_TRANSFER_ACK;
break;
case READ_FW_CMD:
pkt_out.code = READ_FW_ACK;
read_firmware(pkt_in->addr, &pkt_out);
break;
case FINALIZE_BURNING_CMD:
//With stuff verified, burn values into EEPROM
done_burning = true;
calculate_crc(&(crc_info.fw_crc), crc_info.fw_len);
eeprom_write_block(&crc_info, (void*)OCTOCLOCK_EEPROM_APP_LEN, 4);
pkt_out.code = FINALIZE_BURNING_ACK;
break;
default:
break;
}
send_udp_pkt(OCTOCLOCK_UDP_FW_PORT, src, (void*)&pkt_out, sizeof(octoclock_packet_t));
}
void handle_udp_eeprom_packet(
struct socket_address src, struct socket_address dst,
unsigned char *payload, int payload_len
){
octoclock_packet_t *pkt_in = (octoclock_packet_t*)payload;
octoclock_packet_t pkt_out;
pkt_out.proto_ver = OCTOCLOCK_BOOTLOADER_PROTO_VER;
pkt_out.sequence = pkt_in->sequence;
pkt_out.len = 0;
if(pkt_in->proto_ver == OCTOCLOCK_FW_COMPAT_NUM){
switch(pkt_in->code){
case CLEAR_EEPROM_CMD:
received_cmd = true;
uint8_t blank_eeprom[103];
memset(blank_eeprom, 0xFF, 103);
eeprom_write_block(blank_eeprom, 0, 103);
pkt_out.code = CLEAR_EEPROM_ACK;
send_udp_pkt(OCTOCLOCK_UDP_EEPROM_PORT, src, (void*)&pkt_out, sizeof(octoclock_packet_t));
break;
default:
break;
}
}
}
int main(void){
asm("cli");
//Initialization
setup_atmel_io_ports();
network_init();
init_udp_listeners();
register_udp_listener(OCTOCLOCK_UDP_CTRL_PORT, handle_udp_query_packet);
register_udp_listener(OCTOCLOCK_UDP_FW_PORT, handle_udp_fw_packet);
register_udp_listener(OCTOCLOCK_UDP_EEPROM_PORT, handle_udp_eeprom_packet);
/*
* Initialize AVR timer. This will be used to detect how much time has gone
* by with no contact from the octoclock_burn_firmware utility. If 5 seconds go by
* with no PREPARE_FW_BURN_CMD packet, the bootloader will jump into the
* existing application.
*
* This timer is polled by the main loop with each iteration instead of using
* an interrupt.
*/
TCCR1B = (1 << CS12) | (1 << CS10);
TCNT1 = 0;
bool app_checked = false;
while(true){
if(done_burning){
if(valid_app()) break;
else done_burning = false; //Burning somehow failed and wasn't caught
}
if(!app_checked && !received_cmd && TIME_PASSED){
app_checked = true;
if(valid_app()) break;
}
size_t recv_len = enc28j60PacketReceive(512, buf_in);
if(recv_len > 0) handle_eth_packet(recv_len);
}
/*
* Whether the bootloader reaches here through five seconds of inactivity
* or after a firmware burn just finished, it can be assumed that the application
* is valid.
*/
asm("jmp 0000");
return 0; //Will never get here, but AVR-GCC needs it
}