/* -*- c -*- */ /* * Copyright 2007,2008,2009 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* Overall Memory Map * 0000-7FFF 32K RAM space (16K on 1500, 24K on 2000, 32K on DSP) * 8000-BFFF 16K Buffer Pool * C000-FFFF 16K Peripherals */ #ifndef INCLUDED_MEMORY_MAP_H #define INCLUDED_MEMORY_MAP_H #include #define MASTER_CLK_RATE 100000000 // 100 MHz //////////////////////////////////////////////////////////////// // // Memory map for embedded wishbone bus // //////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////// // Main RAM, Slave 0 #define RAM_BASE 0x0000 //////////////////////////////////////////////////////////////// // Buffer Pool RAM, Slave 1 // // The buffers themselves are located in Slave 1, Buffer Pool RAM. // The status registers are in Slave 5, Buffer Pool Status. // The control register is in Slave 7, Settings Bus. #define BUFFER_POOL_RAM_BASE 0x8000 #define BP_NLINES 0x0200 // number of 32-bit lines in a buffer #define buffer_pool_ram \ ((uint32_t *) BUFFER_POOL_RAM_BASE) #define buffer_ram(n) (&buffer_pool_ram[(n) * BP_NLINES]) ///////////////////////////////////////////////////// // SPI Core, Slave 2. See core docs for more info #define SPI_BASE 0xC000 // Base address (16-bit) typedef struct { volatile uint32_t txrx0; volatile uint32_t txrx1; volatile uint32_t txrx2; volatile uint32_t txrx3; volatile uint32_t ctrl; volatile uint32_t div; volatile uint32_t ss; } spi_regs_t; #define spi_regs ((spi_regs_t *) SPI_BASE) // Masks for controlling different peripherals #define SPI_SS_AD9510 1 #define SPI_SS_AD9777 2 #define SPI_SS_RX_DAC 4 #define SPI_SS_RX_ADC 8 #define SPI_SS_RX_DB 16 #define SPI_SS_TX_DAC 32 #define SPI_SS_TX_ADC 64 #define SPI_SS_TX_DB 128 #define SPI_SS_ADS64P44 256 // Masks for different parts of CTRL reg #define SPI_CTRL_ASS (1<<13) #define SPI_CTRL_IE (1<<12) #define SPI_CTRL_LSB (1<<11) #define SPI_CTRL_TXNEG (1<<10) #define SPI_CTRL_RXNEG (1<< 9) #define SPI_CTRL_GO_BSY (1<< 8) #define SPI_CTRL_CHAR_LEN_MASK 0x7F //////////////////////////////////////////////// // I2C, Slave 3 // See Wishbone I2C-Master Core Specification. #define I2C_BASE 0xC400 typedef struct { volatile uint32_t prescaler_lo; // r/w volatile uint32_t prescaler_hi; // r/w volatile uint32_t ctrl; // r/w volatile uint32_t data; // wr = transmit reg; rd = receive reg volatile uint32_t cmd_status; // wr = command reg; rd = status reg } i2c_regs_t; #define i2c_regs ((i2c_regs_t *) I2C_BASE) #define I2C_CTRL_EN (1 << 7) // core enable #define I2C_CTRL_IE (1 << 6) // interrupt enable // // STA, STO, RD, WR, and IACK bits are cleared automatically // #define I2C_CMD_START (1 << 7) // generate (repeated) start condition #define I2C_CMD_STOP (1 << 6) // generate stop condition #define I2C_CMD_RD (1 << 5) // read from slave #define I2C_CMD_WR (1 << 4) // write to slave #define I2C_CMD_NACK (1 << 3) // when a rcvr, send ACK (ACK=0) or NACK (ACK=1) #define I2C_CMD_RSVD_2 (1 << 2) // reserved #define I2C_CMD_RSVD_1 (1 << 1) // reserved #define I2C_CMD_IACK (1 << 0) // set to clear pending interrupt #define I2C_ST_RXACK (1 << 7) // Received acknowledgement from slave (1 = NAK, 0 = ACK) #define I2C_ST_BUSY (1 << 6) // 1 after START signal detected; 0 after STOP signal detected #define I2C_ST_AL (1 << 5) // Arbitration lost. 1 when core lost arbitration #define I2C_ST_RSVD_4 (1 << 4) // reserved #define I2C_ST_RSVD_3 (1 << 3) // reserved #define I2C_ST_RSVD_2 (1 << 2) // reserved #define I2C_ST_TIP (1 << 1) // Transfer-in-progress #define I2C_ST_IP (1 << 0) // Interrupt pending //////////////////////////////////////////////// // GPIO, Slave 4 // // These go to the daughterboard i/o pins #define GPIO_BASE 0xC800 typedef struct { volatile uint32_t io; // tx data in high 16, rx in low 16 volatile uint32_t ddr; // 32 bits, 1 means output. tx in high 16, rx in low 16 volatile uint32_t tx_sel; // 16 2-bit fields select which source goes to TX DB volatile uint32_t rx_sel; // 16 2-bit fields select which source goes to RX DB } gpio_regs_t; // each 2-bit sel field is layed out this way #define GPIO_SEL_SW 0 // if pin is an output, set by software in the io reg #define GPIO_SEL_ATR 1 // if pin is an output, set by ATR logic #define GPIO_SEL_DEBUG_0 2 // if pin is an output, debug lines from FPGA fabric #define GPIO_SEL_DEBUG_1 3 // if pin is an output, debug lines from FPGA fabric #define gpio_base ((gpio_regs_t *) GPIO_BASE) /////////////////////////////////////////////////// // Buffer Pool Status, Slave 5 // // The buffers themselves are located in Slave 1, Buffer Pool RAM. // The status registers are in Slave 5, Buffer Pool Status. // The control register is in Slave 7, Settings Bus. #define BUFFER_POOL_STATUS_BASE 0xCC00 typedef struct { volatile uint32_t _padding[8]; volatile uint32_t status; volatile uint32_t hw_config; // see below volatile uint32_t dummy[3]; volatile uint32_t irqs; volatile uint32_t pri_enc_bp_status; volatile uint32_t cycle_count; } buffer_pool_status_t; #define buffer_pool_status ((buffer_pool_status_t *) BUFFER_POOL_STATUS_BASE) // The hw_config register #define HWC_SIMULATION 0x80000000 #define HWC_WB_CLK_DIV_MASK 0x0000000f /*! * \brief return non-zero if we're running under the simulator */ inline static int hwconfig_simulation_p(void) { return buffer_pool_status->hw_config & HWC_SIMULATION; } /*! * \brief Return Wishbone Clock divisor. * The processor runs at the Wishbone Clock rate which is MASTER_CLK_RATE / divisor. */ inline static int hwconfig_wishbone_divisor(void) { return buffer_pool_status->hw_config & HWC_WB_CLK_DIV_MASK; } /////////////////////////////////////////////////// // Ethernet Core, Slave 6 #define ETH_BASE 0xD000 #include "eth_mac_regs.h" #define eth_mac ((eth_mac_regs_t *) ETH_BASE) //////////////////////////////////////////////////// // Settings Bus, Slave #7, Not Byte Addressable! // // Output-only from processor point-of-view. // 1KB of address space (== 256 32-bit write-only regs) #define MISC_OUTPUT_BASE 0xD400 #define TX_PROTOCOL_ENGINE_BASE 0xD480 #define RX_PROTOCOL_ENGINE_BASE 0xD4C0 #define BUFFER_POOL_CTRL_BASE 0xD500 #define LAST_SETTING_REG 0xD7FC // last valid setting register #define SR_MISC 0 #define SR_TX_PROT_ENG 32 #define SR_RX_PROT_ENG 48 #define SR_BUFFER_POOL_CTRL 64 #define SR_UDP_SM 96 #define SR_TX_DSP 208 #define SR_TX_CTRL 224 #define SR_RX_DSP 160 #define SR_RX_CTRL 176 #define SR_TIME64 192 #define SR_SIMTIMER 198 #define SR_LAST 255 #define _SR_ADDR(sr) (MISC_OUTPUT_BASE + (sr) * sizeof(uint32_t)) // --- buffer pool control regs --- typedef struct { volatile uint32_t misc_ctrl; volatile uint32_t ip_addr; volatile uint32_t ctrl_ports; //ctrl (low 16) other (high 16) volatile uint32_t data_ports; //dsp0 (low 16) dsp1 (high 16) volatile uint32_t cpu_out_ctrl; volatile uint32_t cpu_inp_ctrl; } buffer_pool_ctrl_t; #define buffer_pool_ctrl ((buffer_pool_ctrl_t *) BUFFER_POOL_CTRL_BASE) // --- misc outputs --- typedef struct { volatile uint32_t clk_ctrl; volatile uint32_t serdes_ctrl; volatile uint32_t adc_ctrl; volatile uint32_t leds; volatile uint32_t phy_ctrl; // LSB is reset line to eth phy volatile uint32_t debug_mux_ctrl; volatile uint32_t ram_page; // FIXME should go somewhere else... volatile uint32_t flush_icache; // Flush the icache volatile uint32_t led_src; // HW or SW control for LEDs } output_regs_t; #define CLK_RESET (1<<4) #define CLK_ENABLE (1<<3) | (1<<2) #define CLK_SEL (1<<1) | (1<<0) #define SERDES_ENABLE 8 #define SERDES_PRBSEN 4 #define SERDES_LOOPEN 2 #define SERDES_RXEN 1 #define ADC_CTRL_ON 0x0F #define ADC_CTRL_OFF 0x00 // crazy order that matches the labels on the case #define LED_A (1 << 4) #define LED_B (1 << 1) #define LED_C (1 << 3) #define LED_D (1 << 0) #define LED_E (1 << 2) // LED_F // controlled by CPLD #define LED_RJ45 (1 << 5) #define output_regs ((output_regs_t *) MISC_OUTPUT_BASE) // --- udp tx regs --- typedef struct { // Bits 19:16 are control info; bits 15:0 are data (see below) // First two words are unused. volatile uint32_t _nope[2]; //--- ethernet header - 14 bytes--- volatile struct{ uint32_t mac_dst_0_1; //word 2 uint32_t mac_dst_2_3; uint32_t mac_dst_4_5; uint32_t mac_src_0_1; uint32_t mac_src_2_3; uint32_t mac_src_4_5; uint32_t ether_type; //word 8 } eth_hdr; //--- ip header - 20 bytes --- volatile struct{ uint32_t ver_ihl_tos; //word 9 uint32_t total_length; uint32_t identification; uint32_t flags_frag_off; uint32_t ttl_proto; uint32_t checksum; uint32_t src_addr_high; uint32_t src_addr_low; uint32_t dst_addr_high; uint32_t dst_addr_low; //word 18 } ip_hdr; //--- udp header - 8 bytes --- volatile struct{ uint32_t src_port; //word 19 uint32_t dst_port; uint32_t length; uint32_t checksum; //word 22 } udp_hdr; volatile uint32_t _pad[1]; volatile uint32_t dsp0_port; volatile uint32_t err0_port; volatile uint32_t dsp1_port; volatile uint32_t err1_port; } sr_udp_sm_t; // control bits (all expect UDP_SM_LAST_WORD are mutually exclusive) // Insert a UDP source port from the table #define UDP_SM_INS_UDP_SRC_PORT (1 << 21) // Insert a UDP dest port from the table #define UDP_SM_INS_UDP_DST_PORT (1 << 20) // This is the last word of the header #define UDP_SM_LAST_WORD (1 << 19) // Insert IP header checksum here. Data is the xor of 16'hFFFF and // the values written into regs 9-13 and 15-18. #define UDP_SM_INS_IP_HDR_CHKSUM (1 << 18) // Insert IP Length here (data ignored) #define UDP_SM_INS_IP_LEN (1 << 17) // Insert UDP Length here (data ignore) #define UDP_SM_INS_UDP_LEN (1 << 16) #define sr_udp_sm ((sr_udp_sm_t *) _SR_ADDR(SR_UDP_SM)) // --- dsp tx regs --- #define MIN_CIC_INTERP 1 #define MAX_CIC_INTERP 128 typedef struct { volatile uint32_t num_chan; volatile uint32_t clear_state; // clears out state machine, fifos, volatile uint32_t report_sid; volatile uint32_t policy; volatile uint32_t cyc_per_up; volatile uint32_t packets_per_up; } sr_tx_ctrl_t; #define sr_tx_ctrl ((sr_tx_ctrl_t *) _SR_ADDR(SR_TX_CTRL)) typedef struct { volatile int32_t freq; volatile uint32_t scale_iq; // {scale_i,scale_q} volatile uint32_t interp_rate; volatile uint32_t _padding0; // padding for the tx_mux // NOT freq, scale, interp /*! * \brief output mux configuration. * *
   *     3                   2                   1                       
   *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   *  +-------------------------------+-------+-------+-------+-------+
   *  |                                               | DAC1  |  DAC0 |
   *  +-------------------------------+-------+-------+-------+-------+
   * 
   *  There are N DUCs (1 now) with complex inputs and outputs.
   *  There are two DACs.
   * 
   *  Each 4-bit DACx field specifies the source for the DAC
   *  Each subfield is coded like this: 
   * 
   *     3 2 1 0
   *    +-------+
   *    |   N   |
   *    +-------+
   * 
   *  N specifies which DUC output is connected to this DAC.
   * 
   *   N   which interp output
   *  ---  -------------------
   *   0   DUC 0 I
   *   1   DUC 0 Q
   *   2   DUC 1 I
   *   3   DUC 1 Q
   *   F   All Zeros
   *   
   * The default value is 0x10
   * 
*/ volatile uint32_t tx_mux; } dsp_tx_regs_t; #define dsp_tx_regs ((dsp_tx_regs_t *) _SR_ADDR(SR_TX_DSP)) // --- VITA RX CTRL regs --- typedef struct { // The following 3 are logically a single command register. // They are clocked into the underlying fifo when time_ticks is written. volatile uint32_t cmd; // {now, chain, num_samples(30) volatile uint32_t time_secs; volatile uint32_t time_ticks; volatile uint32_t clear_overrun; // write anything to clear overrun volatile uint32_t vrt_header; // word 0 of packet. FPGA fills in packet counter volatile uint32_t vrt_stream_id; // word 1 of packet. volatile uint32_t vrt_trailer; volatile uint32_t nsamples_per_pkt; volatile uint32_t nchannels; // 1 in basic case, up to 4 for vector sources volatile uint32_t pad[7]; // Make each structure 16 elements long } sr_rx_ctrl_t; #define sr_rx_ctrl ((sr_rx_ctrl_t *) _SR_ADDR(SR_RX_CTRL)) // --- dsp rx regs --- #define MIN_CIC_DECIM 1 #define MAX_CIC_DECIM 128 typedef struct { volatile int32_t freq; volatile uint32_t scale_iq; // {scale_i,scale_q} volatile uint32_t decim_rate; volatile uint32_t dcoffset_i; // Bit 31 high sets fixed offset mode, using lower 14 bits, // otherwise it is automatic volatile uint32_t dcoffset_q; // Bit 31 high sets fixed offset mode, using lower 14 bits /*! * \brief input mux configuration. * * This determines which ADC (or constant zero) is connected to * each DDC input. There are N DDCs (1 now). Each has two inputs. * *
   * Mux value:
   *
   *    3                   2                   1                       
   *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   * +-------+-------+-------+-------+-------+-------+-------+-------+
   * |                                                       |Q0 |I0 |
   * +-------+-------+-------+-------+-------+-------+-------+-------+
   *
   * Each 2-bit I field is either 00 (A/D A), 01 (A/D B) or 1X (const zero)
   * Each 2-bit Q field is either 00 (A/D A), 01 (A/D B) or 1X (const zero)
   *
   * The default value is 0x4
   * 
*/ volatile uint32_t rx_mux; // called adc_mux in dsp_core_rx.v /*! * \brief Streaming GPIO configuration * * This determines whether the LSBs of I and Q samples come from the DSP * pipeline or from the io_rx GPIO pins. To stream GPIO, one must first * set the GPIO data direction register to have io_rx[15] and/or io_rx[14] * configured as inputs. The GPIO pins will be sampled at the time the * remainder of the DSP sample is strobed into the RX sample FIFO. There * will be a decimation-dependent fixed time offset between the GPIO * sample stream and the associated RF samples. * * 3 2 1 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * | MBZ |Q|I| * +-------+-------+-------+-------+-------+-------+-------+-------+ * * I 0=LSB comes from DSP pipeline (default) * 1=LSB comes from io_rx[15] * * Q 0=LSB comes from DSP pipeline (default) * 1=LSB comes from io_rx[14] */ volatile uint32_t gpio_stream_enable; } dsp_rx_regs_t; #define dsp_rx_regs ((dsp_rx_regs_t *) _SR_ADDR(SR_RX_DSP)) // ---------------------------------------------------------------- // VITA49 64 bit time (write only) /*! * \brief Time 64 flags * *
   *
   *    3                   2                   1                       
   *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   * +-----------------------------------------------------------+-+-+
   * |                                                           |S|P|
   * +-----------------------------------------------------------+-+-+
   *
   * P - PPS edge selection (0=negedge, 1=posedge, default=0)
   * S - Source (0=sma, 1=mimo, 0=default)
   *
   * 
*/ typedef struct { volatile uint32_t secs; // value to set absolute secs to on next PPS volatile uint32_t ticks; // value to set absolute ticks to on next PPS volatile uint32_t flags; // flags - see chart above volatile uint32_t imm; // set immediate (0=latch on next pps, 1=latch immediate, default=0) } sr_time64_t; #define sr_time64 ((sr_time64_t *) _SR_ADDR(SR_TIME64)) /* * --- ethernet tx protocol engine regs (write only) --- * * These registers control the transmit portion of the ethernet * protocol engine (out of USRP2). The protocol engine handles fifo * status and sequence number insertion in outgoing packets, and * automagically generates status packets when required to inform the * host of changes in fifo availability. * * All outgoing packets have their fifo_status field set to the number * of 32-bit lines of fifo available in the ethernet Rx fifo (see * usrp2_eth_packet.h). Seqno's are set if FIXME, else 0. * * FIXME clean this up once we know how it's supposed to behave. */ typedef struct { volatile uint32_t flags; // not yet fully defined (channel?) volatile uint32_t mac_dst0123; // 4 bytes of destination mac addr volatile uint32_t mac_dst45src01; // 2 bytes of dest mac addr; 2 bytes of src mac addr volatile uint32_t mac_src2345; // 4 bytes of destination mac addr volatile uint32_t seqno; // Write to init seqno. It autoincs on match } tx_proto_engine_regs_t; #define tx_proto_engine ((tx_proto_engine_regs_t *) TX_PROTOCOL_ENGINE_BASE) /* * --- ethernet rx protocol engine regs (write only) --- * * These registers control the receive portion of the ethernet * protocol engine (into USRP2). The protocol engine offloads common * packet inspection operations so that firmware has less to do on * "fast path" packets. * * The registers define conditions which must be matched for a packet * to be considered a "fast path" packet. If a received packet * matches the src and dst mac address, ethertype, flags field, and * expected seqno number it is considered a "fast path" packet, and * the expected seqno is updated. If the packet fails to satisfy any * of the above conditions it's a "slow path" packet, and the * corresponding SLOWPATH flag will be set buffer_status register. */ typedef struct { volatile uint32_t flags; // not yet fully defined (channel?) volatile uint32_t mac_dst0123; // 4 bytes of destination mac addr volatile uint32_t mac_dst45src01; // 2 bytes of dest mac addr; 2 bytes of src mac addr volatile uint32_t mac_src2345; // 4 bytes of destination mac addr volatile uint32_t ethertype_pad; // ethertype in high 16-bits } rx_proto_engine_regs_t; #define rx_proto_engine ((rx_proto_engine_regs_t *) RX_PROTOCOL_ENGINE_BASE) /////////////////////////////////////////////////// // Simple Programmable Interrupt Controller, Slave 8 #define PIC_BASE 0xD800 // Interrupt request lines // Bit numbers (LSB == 0) that correpond to interrupts into PIC #define IRQ_BUFFER 0 // buffer manager #define IRQ_ONETIME 1 #define IRQ_SPI 2 #define IRQ_I2C 3 #define IRQ_PHY 4 // ethernet PHY #define IRQ_UNDERRUN 5 #define IRQ_OVERRUN 6 #define IRQ_PPS 7 // pulse per second #define IRQ_UART_RX 8 #define IRQ_UART_TX 9 #define IRQ_SERDES 10 #define IRQ_CLKSTATUS 11 #define IRQ_PERIODIC 12 #define IRQ_TO_MASK(x) (1 << (x)) #define PIC_BUFFER_INT IRQ_TO_MASK(IRQ_BUFFER) #define PIC_ONETIME_INT IRQ_TO_MASK(IRQ_ONETIME) #define PIC_SPI_INT IRQ_TO_MASK(IRQ_SPI) #define PIC_I2C_INT IRQ_TO_MASK(IRQ_I2C) #define PIC_PHY_INT IRQ_TO_MASK(IRQ_PHY) #define PIC_UNDERRUN_INT IRQ_TO_MASK(IRQ_UNDERRUN) #define PIC_OVERRUN_INT IRQ_TO_MASK(IRQ_OVERRUN) #define PIC_PPS_INT IRQ_TO_MASK(IRQ_PPS) #define PIC_UART_RX_INT IRQ_TO_MASK(IRQ_UART_RX) #define PIC_UART_TX_INT IRQ_TO_MASK(IRQ_UART_TX) #define PIC_SERDES IRQ_TO_MASK(IRQ_SERDES) #define PIC_CLKSTATUS IRQ_TO_MASK(IRQ_CLKSTATUS) typedef struct { volatile uint32_t edge_enable; // mask: 1 -> edge triggered, 0 -> level volatile uint32_t polarity; // mask: 1 -> rising edge volatile uint32_t mask; // mask: 1 -> disabled volatile uint32_t pending; // mask: 1 -> pending; write 1's to clear pending ints } pic_regs_t; #define pic_regs ((pic_regs_t *) PIC_BASE) // ---------------------------------------------------------------- // WB_CLK_RATE is the time base for this typedef struct { volatile uint32_t onetime; // Number of wb clk cycles till the onetime interrupt volatile uint32_t periodic; // Repeat rate of periodic interrupt } sr_simple_timer_t; #define sr_simple_timer ((sr_simple_timer_t *) _SR_ADDR(SR_SIMTIMER)) /////////////////////////////////////////////////// // UART, Slave 10 #define UART_BASE 0xE000 typedef struct { // All elements are 8 bits except for clkdiv (16), but we use uint32 to make // the hardware for decoding easier volatile uint32_t clkdiv; // Set to 50e6 divided by baud rate (no x16 factor) volatile uint32_t txlevel; // Number of spaces in the FIFO for writes volatile uint32_t rxlevel; // Number of available elements in the FIFO for reads volatile uint32_t txchar; // Write characters to be sent here volatile uint32_t rxchar; // Read received characters here } uart_regs_t; #define uart_regs ((uart_regs_t *) UART_BASE) /////////////////////////////////////////////////// // ATR Controller, Slave 11 #define ATR_BASE 0xE400 typedef struct { volatile uint32_t v[16]; } atr_regs_t; #define ATR_IDLE 0x0 // indicies into v #define ATR_TX 0x1 #define ATR_RX 0x2 #define ATR_FULL 0x3 #define atr_regs ((atr_regs_t *) ATR_BASE) /////////////////////////////////////////////////// // SD Card SPI interface, Slave 13 // All regs are 8 bits wide, but are accessed as if they are 32 bits #define SDSPI_BASE 0xEC00 typedef struct { volatile uint32_t status; // Write a 1 or 0 for controlling CS volatile uint32_t clkdiv; volatile uint32_t send_dat; volatile uint32_t receive_dat; } sdspi_regs_t; #define sdspi_regs ((sdspi_regs_t *) SDSPI_BASE) /////////////////////////////////////////////////// // External RAM interface, Slave 14 // Pages are 1K. Page is 10 bits, set by a control register // output_regs->ram_page #define EXTRAM_BASE 0xF000 #define extram ((volatile uint32_t *) EXTRAM_BASE) /////////////////////////////////////////////////// #endif