/* -*- c++ -*- */
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include "memory_map.h"
#include "ad9510.h"
#include "spi.h"
#include "u2_init.h"
#include "nonstdio.h"
void
clocks_init(void)
{
// Set up basic clocking functions in AD9510
ad9510_write_reg(0x45, 0x00); // CLK2 drives distribution
clocks_enable_fpga_clk(true, 1);
spi_wait();
// Set up PLL for 10 MHz reference
// Reg 4, A counter, Don't Care
ad9510_write_reg(0x05, 0x00); // Reg 5, B counter MSBs, 0
ad9510_write_reg(0x06, 0x05); // Reg 6, B counter LSBs, 5
// Reg 7, Loss of reference detect, doesn't work yet, 0
ad9510_write_reg(0x5A, 0x01); // Update Regs
// Primary clock configuration
clocks_mimo_config(MC_WE_DONT_LOCK);
// Set up other clocks
clocks_enable_test_clk(false, 0);
clocks_enable_tx_dboard(false, 0);
clocks_enable_rx_dboard(false, 0);
clocks_enable_eth_phyclk(false, 0);
// Enable clock to ADCs and DACs
clocks_enable_dac_clk(true, 1);
clocks_enable_adc_clk(true, 1);
}
void
clocks_mimo_config(int flags)
{
if (flags & _MC_WE_LOCK){
// Reg 8, Charge pump on, dig lock det, positive PFD, 47
ad9510_write_reg(0x08, 0x47);
}
else {
// Reg 8, Charge pump off, dig lock det, positive PFD
ad9510_write_reg(0x08, 0x00);
}
// Reg 9, Charge pump current, 0x40=3mA, 0x00=650uA
ad9510_write_reg(0x09, 0x00);
// Reg A, Prescaler of 2, everything normal 04
ad9510_write_reg(0x0A, 0x04);
// Reg B, R Div MSBs, 0
ad9510_write_reg(0x0B, 0x00);
// Reg C, R Div LSBs, 1
ad9510_write_reg(0x0C, 0x01);
// Reg D, Antibacklash, Digital lock det, 0
ad9510_write_reg(0x5A, 0x01); // Update Regs
spi_wait();
// Allow for clock switchover
if (flags & _MC_WE_LOCK){ // WE LOCK
if (flags & _MC_MIMO_CLK_INPUT) {
// Turn on ref output and choose the MIMO connector
output_regs->clk_ctrl = 0x15;
}
else {
// turn on ref output and choose the SMA
output_regs->clk_ctrl = 0x1C;
}
}
else { // WE DONT LOCK
// Disable both ext clk inputs
output_regs->clk_ctrl = 0x10;
}
// Do we drive a clock onto the MIMO connector?
if (flags & MC_PROVIDE_CLK_TO_MIMO)
clocks_enable_clkexp_out(true,10);
else
clocks_enable_clkexp_out(false,0);
}
bool
clocks_lock_detect()
{
if(pic_regs->pending & PIC_CLKSTATUS)
return true;
return false;
}
int inline
clocks_gen_div(int divisor)
{
int L,H;
L = (divisor>>1)-1;
H = divisor-L-2;
return (L<<4)|H;
}
#define CLOCK_OUT_EN 0x08
#define CLOCK_OUT_DIS_CMOS 0x01
#define CLOCK_OUT_DIS_PECL 0x02
#define CLOCK_DIV_DIS 0x80
#define CLOCK_DIV_EN 0x00
#define CLOCK_MODE_PECL 1
#define CLOCK_MODE_LVDS 2
#define CLOCK_MODE_CMOS 3
void
clocks_enable_XXX_clk(bool enable, int divisor, int reg_en, int reg_div, int mode)
{
int enable_word, div_word, div_en_word;
switch(mode) {
case CLOCK_MODE_PECL :
enable_word = enable ? 0x08 : 0x0A;
break;
case CLOCK_MODE_LVDS :
enable_word = enable ? 0x02 : 0x03;
break;
case CLOCK_MODE_CMOS :
enable_word = enable ? 0x08 : 0x09;
break;
}
if(enable && (divisor>1)) {
div_word = clocks_gen_div(divisor);
div_en_word = CLOCK_DIV_EN;
}
else {
div_word = 0;
div_en_word = CLOCK_DIV_DIS;
}
ad9510_write_reg(reg_en,enable_word); // Output en/dis
ad9510_write_reg(reg_div,div_word); // Set divisor
ad9510_write_reg(reg_div+1,div_en_word); // Enable or Bypass Divider
ad9510_write_reg(0x5A, 0x01); // Update Regs
}
// Clock 0
void
clocks_enable_test_clk(bool enable, int divisor)
{
clocks_enable_XXX_clk(enable,divisor,0x3C,0x48,CLOCK_MODE_PECL);
}
// Clock 1
void
clocks_enable_fpga_clk(bool enable, int divisor)
{
clocks_enable_XXX_clk(enable,divisor,0x3D,0x4A,CLOCK_MODE_PECL);
}
// Clock 2 on Rev 3, Clock 5 on Rev 4
void
clocks_enable_clkexp_out(bool enable, int divisor)
{
if(u2_hw_rev_major == 3)
clocks_enable_XXX_clk(enable,divisor,0x3E,0x4C,CLOCK_MODE_PECL);
else if(u2_hw_rev_major == 4) {
ad9510_write_reg(0x34,0x00); // Turn on fine delay
ad9510_write_reg(0x35,0x00); // Set Full Scale to nearly 10ns
ad9510_write_reg(0x36,0x1c); // Set fine delay. 0x20 is midscale
clocks_enable_XXX_clk(enable,divisor,0x41,0x52,CLOCK_MODE_LVDS);
}
else
putstr("ERR: Invalid Rev\n");
}
// Clock 5 on Rev 3, none (was 2) on Rev 4
void
clocks_enable_eth_phyclk(bool enable, int divisor)
{
if(u2_hw_rev_major == 3)
clocks_enable_XXX_clk(enable,divisor,0x41,0x52,CLOCK_MODE_LVDS);
else if(u2_hw_rev_major == 4)
clocks_enable_XXX_clk(enable,divisor,0x3E,0x4C,CLOCK_MODE_PECL);
else
putstr("ERR: Invalid Rev\n");
}
// Clock 3
void
clocks_enable_dac_clk(bool enable, int divisor)
{
clocks_enable_XXX_clk(enable,divisor,0x3F,0x4E,CLOCK_MODE_PECL);
}
// Clock 4
void
clocks_enable_adc_clk(bool enable, int divisor)
{
clocks_enable_XXX_clk(enable,divisor,0x40,0x50,CLOCK_MODE_LVDS);
}
// Clock 6
void
clocks_enable_tx_dboard(bool enable, int divisor)
{
clocks_enable_XXX_clk(enable,divisor,0x42,0x54,CLOCK_MODE_CMOS);
}
// Clock 7
void
clocks_enable_rx_dboard(bool enable, int divisor)
{
clocks_enable_XXX_clk(enable,divisor,0x43,0x56,CLOCK_MODE_CMOS);
}