/* -*- c++ -*- */ /* * Copyright 2008 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifdef HAVE_CONFIG_H #include #endif #include #include "memory_map.h" #include "ad9510.h" #include "spi.h" #include "u2_init.h" #include "nonstdio.h" void clocks_init(void) { // Set up basic clocking functions in AD9510 ad9510_write_reg(0x45, 0x00); // CLK2 drives distribution clocks_enable_fpga_clk(true, 1); spi_wait(); // Set up PLL for 10 MHz reference // Reg 4, A counter, Don't Care ad9510_write_reg(0x05, 0x00); // Reg 5, B counter MSBs, 0 ad9510_write_reg(0x06, 0x05); // Reg 6, B counter LSBs, 5 // Reg 7, Loss of reference detect, doesn't work yet, 0 ad9510_write_reg(0x5A, 0x01); // Update Regs // Primary clock configuration clocks_mimo_config(MC_WE_DONT_LOCK); // Set up other clocks clocks_enable_test_clk(false, 0); clocks_enable_tx_dboard(false, 0); clocks_enable_rx_dboard(false, 0); clocks_enable_eth_phyclk(false, 0); // Enable clock to ADCs and DACs clocks_enable_dac_clk(true, 1); clocks_enable_adc_clk(true, 1); } void clocks_mimo_config(int flags) { if (flags & _MC_WE_LOCK){ // Reg 8, Charge pump on, dig lock det, positive PFD, 47 ad9510_write_reg(0x08, 0x47); } else { // Reg 8, Charge pump off, dig lock det, positive PFD ad9510_write_reg(0x08, 0x00); } // Reg 9, Charge pump current, 0x40=3mA, 0x00=650uA ad9510_write_reg(0x09, 0x00); // Reg A, Prescaler of 2, everything normal 04 ad9510_write_reg(0x0A, 0x04); // Reg B, R Div MSBs, 0 ad9510_write_reg(0x0B, 0x00); // Reg C, R Div LSBs, 1 ad9510_write_reg(0x0C, 0x01); // Reg D, Antibacklash, Digital lock det, 0 ad9510_write_reg(0x5A, 0x01); // Update Regs spi_wait(); // Allow for clock switchover if (flags & _MC_WE_LOCK){ // WE LOCK if (flags & _MC_MIMO_CLK_INPUT) { // Turn on ref output and choose the MIMO connector output_regs->clk_ctrl = 0x15; } else { // turn on ref output and choose the SMA output_regs->clk_ctrl = 0x1C; } } else { // WE DONT LOCK // Disable both ext clk inputs output_regs->clk_ctrl = 0x10; } // Do we drive a clock onto the MIMO connector? if (flags & MC_PROVIDE_CLK_TO_MIMO) clocks_enable_clkexp_out(true,10); else clocks_enable_clkexp_out(false,0); } bool clocks_lock_detect() { if(pic_regs->pending & PIC_CLKSTATUS) return true; return false; } int inline clocks_gen_div(int divisor) { int L,H; L = (divisor>>1)-1; H = divisor-L-2; return (L<<4)|H; } #define CLOCK_OUT_EN 0x08 #define CLOCK_OUT_DIS_CMOS 0x01 #define CLOCK_OUT_DIS_PECL 0x02 #define CLOCK_DIV_DIS 0x80 #define CLOCK_DIV_EN 0x00 #define CLOCK_MODE_PECL 1 #define CLOCK_MODE_LVDS 2 #define CLOCK_MODE_CMOS 3 void clocks_enable_XXX_clk(bool enable, int divisor, int reg_en, int reg_div, int mode) { int enable_word, div_word, div_en_word; switch(mode) { case CLOCK_MODE_PECL : enable_word = enable ? 0x08 : 0x0A; break; case CLOCK_MODE_LVDS : enable_word = enable ? 0x02 : 0x03; break; case CLOCK_MODE_CMOS : enable_word = enable ? 0x08 : 0x09; break; } if(enable && (divisor>1)) { div_word = clocks_gen_div(divisor); div_en_word = CLOCK_DIV_EN; } else { div_word = 0; div_en_word = CLOCK_DIV_DIS; } ad9510_write_reg(reg_en,enable_word); // Output en/dis ad9510_write_reg(reg_div,div_word); // Set divisor ad9510_write_reg(reg_div+1,div_en_word); // Enable or Bypass Divider ad9510_write_reg(0x5A, 0x01); // Update Regs } // Clock 0 void clocks_enable_test_clk(bool enable, int divisor) { clocks_enable_XXX_clk(enable,divisor,0x3C,0x48,CLOCK_MODE_PECL); } // Clock 1 void clocks_enable_fpga_clk(bool enable, int divisor) { clocks_enable_XXX_clk(enable,divisor,0x3D,0x4A,CLOCK_MODE_PECL); } // Clock 2 on Rev 3, Clock 5 on Rev 4 void clocks_enable_clkexp_out(bool enable, int divisor) { if(u2_hw_rev_major == 3) clocks_enable_XXX_clk(enable,divisor,0x3E,0x4C,CLOCK_MODE_PECL); else if(u2_hw_rev_major == 4) { ad9510_write_reg(0x34,0x00); // Turn on fine delay ad9510_write_reg(0x35,0x00); // Set Full Scale to nearly 10ns ad9510_write_reg(0x36,0x1c); // Set fine delay. 0x20 is midscale clocks_enable_XXX_clk(enable,divisor,0x41,0x52,CLOCK_MODE_LVDS); } else putstr("ERR: Invalid Rev\n"); } // Clock 5 on Rev 3, none (was 2) on Rev 4 void clocks_enable_eth_phyclk(bool enable, int divisor) { if(u2_hw_rev_major == 3) clocks_enable_XXX_clk(enable,divisor,0x41,0x52,CLOCK_MODE_LVDS); else if(u2_hw_rev_major == 4) clocks_enable_XXX_clk(enable,divisor,0x3E,0x4C,CLOCK_MODE_PECL); else putstr("ERR: Invalid Rev\n"); } // Clock 3 void clocks_enable_dac_clk(bool enable, int divisor) { clocks_enable_XXX_clk(enable,divisor,0x3F,0x4E,CLOCK_MODE_PECL); } // Clock 4 void clocks_enable_adc_clk(bool enable, int divisor) { clocks_enable_XXX_clk(enable,divisor,0x40,0x50,CLOCK_MODE_LVDS); } // Clock 6 void clocks_enable_tx_dboard(bool enable, int divisor) { clocks_enable_XXX_clk(enable,divisor,0x42,0x54,CLOCK_MODE_CMOS); } // Clock 7 void clocks_enable_rx_dboard(bool enable, int divisor) { clocks_enable_XXX_clk(enable,divisor,0x43,0x56,CLOCK_MODE_CMOS); }