// // Copyright 2010 Ettus Research LLC // /* * Copyright 2007,2008 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "u2_init.h" #include "memory_map.h" #include "spi.h" #include "hal_io.h" #include "buffer_pool.h" #include "pic.h" #include #include "ethernet.h" #include "nonstdio.h" #include "dbsm.h" #include #include #include "memcpy_wa.h" #include #include #include #include "clocks.h" #include "usrp2/fw_common.h" #include #include #include #include #include "udp_fw_update.h" /* * Full duplex Tx and Rx between ethernet and DSP pipelines * * Buffer 1 is used by the cpu to send frames to the host. * Buffers 2 and 3 are used to double-buffer the DSP Rx to eth flow * Buffers 4 and 5 are used to double-buffer the eth to DSP Tx eth flow */ //#define CPU_RX_BUF 0 // eth -> cpu #define DSP_RX_BUF_0 2 // dsp rx -> eth (double buffer) #define DSP_RX_BUF_1 3 // dsp rx -> eth #define DSP_TX_BUF_0 4 // eth -> dsp tx (double buffer) #define DSP_TX_BUF_1 5 // eth -> dsp tx /* * ================================================================ * configure DSP TX double buffering state machine (eth -> dsp) * ================================================================ */ // DSP Tx reads ethernet header words #define DSP_TX_FIRST_LINE ((sizeof(padded_eth_hdr_t) + sizeof(struct ip_hdr) + sizeof(struct udp_hdr))/sizeof(uint32_t)) // Receive from ethernet buf_cmd_args_t dsp_tx_recv_args = { PORT_ETH, 0, BP_LAST_LINE }; // send to DSP Tx buf_cmd_args_t dsp_tx_send_args = { PORT_DSP, DSP_TX_FIRST_LINE, // starts just past transport header 0 // filled in from last_line register }; dbsm_t dsp_tx_sm; // the state machine /* * ================================================================ * configure DSP RX double buffering state machine (dsp -> eth) * ================================================================ */ static const uint32_t rx_ctrl_word = 1 << 16; // DSP Rx writes ethernet header words #define DSP_RX_FIRST_LINE sizeof(rx_ctrl_word)/sizeof(uint32_t) static bool dbsm_rx_inspector(dbsm_t *sm, int buf_this){ size_t num_lines = buffer_pool_status->last_line[buf_this]-DSP_RX_FIRST_LINE; ((uint32_t*)buffer_ram(buf_this))[0] = (num_lines*sizeof(uint32_t)) | (1 << 16); return false; } // receive from DSP buf_cmd_args_t dsp_rx_recv_args = { PORT_DSP, DSP_RX_FIRST_LINE, BP_LAST_LINE }; // send to ETH buf_cmd_args_t dsp_rx_send_args = { PORT_ETH, 0, // starts with ethernet header in line 0 0, // filled in from list_line register }; dbsm_t dsp_rx_sm; // the state machine // The mac address of the host we're sending to. eth_mac_addr_t host_mac_addr; static void setup_network(void); // ---------------------------------------------------------------- // the fast-path setup global variables // ---------------------------------------------------------------- static eth_mac_addr_t fp_mac_addr_src, fp_mac_addr_dst; static struct socket_address fp_socket_src, fp_socket_dst; // ---------------------------------------------------------------- void start_rx_streaming_cmd(void); void stop_rx_cmd(void); static void print_ip_addr(const void *t){ uint8_t *p = (uint8_t *)t; printf("%d.%d.%d.%d", p[0], p[1], p[2], p[3]); } void handle_udp_data_packet( struct socket_address src, struct socket_address dst, unsigned char *payload, int payload_len ){ //its a tiny payload, load the fast-path variables fp_mac_addr_src = *ethernet_mac_addr(); arp_cache_lookup_mac(&src.addr, &fp_mac_addr_dst); fp_socket_src = dst; fp_socket_dst = src; printf("Storing for fast path:\n"); printf(" source mac addr: "); print_mac_addr(fp_mac_addr_src.addr); newline(); printf(" source ip addr: "); print_ip_addr(&fp_socket_src.addr); newline(); printf(" source udp port: %d\n", fp_socket_src.port); printf(" destination mac addr: "); print_mac_addr(fp_mac_addr_dst.addr); newline(); printf(" destination ip addr: "); print_ip_addr(&fp_socket_dst.addr); newline(); printf(" destination udp port: %d\n", fp_socket_dst.port); newline(); //setup network and vrt setup_network(); // kick off the state machine dbsm_start(&dsp_rx_sm); } #define OTW_GPIO_BANK_TO_NUM(bank) \ (((bank) == USRP2_DIR_RX)? (GPIO_RX_BANK) : (GPIO_TX_BANK)) //setup the output data static usrp2_ctrl_data_t ctrl_data_out; static struct socket_address i2c_src; static struct socket_address spi_src; static volatile bool i2c_done = false; void i2c_read_done_callback(void) { //printf("I2C read done callback\n"); i2c_async_data_ready(ctrl_data_out.data.i2c_args.data); i2c_done = true; i2c_register_callback(0); } void i2c_write_done_callback(void) { //printf("I2C write done callback\n"); i2c_done = true; i2c_register_callback(0); } static volatile bool spi_done = false; static volatile uint32_t spi_readback_data; void get_spi_readback_data(void) { ctrl_data_out.data.spi_args.data = spi_get_data(); spi_done = true; spi_register_callback(0); } void handle_udp_ctrl_packet( struct socket_address src, struct socket_address dst, unsigned char *payload, int payload_len ){ //printf("Got ctrl packet #words: %d\n", (int)payload_len); const usrp2_ctrl_data_t *ctrl_data_in = (usrp2_ctrl_data_t *)payload; uint32_t ctrl_data_in_id = ctrl_data_in->id; //ensure that the protocol versions match if (payload_len >= sizeof(uint32_t) && ctrl_data_in->proto_ver != USRP2_FW_COMPAT_NUM){ printf("!Error in control packet handler: Expected compatibility number %d, but got %d\n", USRP2_FW_COMPAT_NUM, ctrl_data_in->proto_ver ); ctrl_data_in_id = USRP2_CTRL_ID_WAZZUP_BRO; } //ensure that this is not a short packet if (payload_len < sizeof(usrp2_ctrl_data_t)){ printf("!Error in control packet handler: Expected payload length %d, but got %d\n", (int)sizeof(usrp2_ctrl_data_t), payload_len ); ctrl_data_in_id = USRP2_CTRL_ID_HUH_WHAT; } //setup the output data ctrl_data_out.proto_ver = USRP2_FW_COMPAT_NUM; ctrl_data_out.id=USRP2_CTRL_ID_HUH_WHAT; ctrl_data_out.seq=ctrl_data_in->seq; //handle the data based on the id switch(ctrl_data_in_id){ /******************************************************************* * Addressing ******************************************************************/ case USRP2_CTRL_ID_WAZZUP_BRO: ctrl_data_out.id = USRP2_CTRL_ID_WAZZUP_DUDE; memcpy(&ctrl_data_out.data.ip_addr, get_ip_addr(), sizeof(struct ip_addr)); send_udp_pkt(USRP2_UDP_CTRL_PORT, src, &ctrl_data_out, sizeof(ctrl_data_out)); break; /******************************************************************* * SPI ******************************************************************/ case USRP2_CTRL_ID_TRANSACT_ME_SOME_SPI_BRO:{ //transact bool success = spi_async_transact( //(ctrl_data_in->data.spi_args.readback == 0)? SPI_TXONLY : SPI_TXRX, ctrl_data_in->data.spi_args.dev, //which device ctrl_data_in->data.spi_args.data, //32 bit data ctrl_data_in->data.spi_args.num_bits, //length in bits (ctrl_data_in->data.spi_args.mosi_edge == USRP2_CLK_EDGE_RISE)? SPIF_PUSH_FALL : SPIF_PUSH_RISE | //flags (ctrl_data_in->data.spi_args.miso_edge == USRP2_CLK_EDGE_RISE)? SPIF_LATCH_RISE : SPIF_LATCH_FALL, get_spi_readback_data //callback ); //load output ctrl_data_out.id = USRP2_CTRL_ID_OMG_TRANSACTED_SPI_DUDE; spi_src = src; } // send_udp_pkt(USRP2_UDP_CTRL_PORT, src, &ctrl_data_out, sizeof(ctrl_data_out)); break; /******************************************************************* * I2C ******************************************************************/ case USRP2_CTRL_ID_DO_AN_I2C_READ_FOR_ME_BRO:{ uint8_t num_bytes = ctrl_data_in->data.i2c_args.bytes; i2c_register_callback(i2c_read_done_callback); i2c_async_read( ctrl_data_in->data.i2c_args.addr, num_bytes ); i2c_src = src; // i2c_dst = dst; ctrl_data_out.id = USRP2_CTRL_ID_HERES_THE_I2C_DATA_DUDE; ctrl_data_out.data.i2c_args.bytes = num_bytes; } break; case USRP2_CTRL_ID_WRITE_THESE_I2C_VALUES_BRO:{ uint8_t num_bytes = ctrl_data_in->data.i2c_args.bytes; i2c_register_callback(i2c_read_done_callback); i2c_async_write( ctrl_data_in->data.i2c_args.addr, ctrl_data_in->data.i2c_args.data, num_bytes ); i2c_src = src; // i2c_dst = dst; ctrl_data_out.id = USRP2_CTRL_ID_COOL_IM_DONE_I2C_WRITE_DUDE; ctrl_data_out.data.i2c_args.bytes = num_bytes; } break; /******************************************************************* * Peek and Poke Register ******************************************************************/ case USRP2_CTRL_ID_POKE_THIS_REGISTER_FOR_ME_BRO: if (0){//ctrl_data_in->data.poke_args.addr < 0xC000){ printf("error! tried to poke into 0x%x\n", ctrl_data_in->data.poke_args.addr); } else switch(ctrl_data_in->data.poke_args.num_bytes){ case sizeof(uint64_t): *((uint32_t *) ctrl_data_in->data.poke_args.addrhi) = (uint32_t)ctrl_data_in->data.poke_args.datahi; //continue to uint32_t for low addr: case sizeof(uint32_t): *((uint32_t *) ctrl_data_in->data.poke_args.addr) = (uint32_t)ctrl_data_in->data.poke_args.data; break; case sizeof(uint16_t): *((uint16_t *) ctrl_data_in->data.poke_args.addr) = (uint16_t)ctrl_data_in->data.poke_args.data; break; case sizeof(uint8_t): *((uint8_t *) ctrl_data_in->data.poke_args.addr) = (uint8_t)ctrl_data_in->data.poke_args.data; break; } ctrl_data_out.id = USRP2_CTRL_ID_OMG_POKED_REGISTER_SO_BAD_DUDE; send_udp_pkt(USRP2_UDP_CTRL_PORT, src, &ctrl_data_out, sizeof(ctrl_data_out)); break; case USRP2_CTRL_ID_PEEK_AT_THIS_REGISTER_FOR_ME_BRO: switch(ctrl_data_in->data.poke_args.num_bytes){ case sizeof(uint64_t): ctrl_data_out.data.poke_args.datahi = *((uint32_t *) ctrl_data_in->data.poke_args.addrhi); //continue to uint32_t for low addr: case sizeof(uint32_t): ctrl_data_out.data.poke_args.data = *((uint32_t *) ctrl_data_in->data.poke_args.addr); break; case sizeof(uint16_t): ctrl_data_out.data.poke_args.data = *((uint16_t *) ctrl_data_in->data.poke_args.addr); break; case sizeof(uint8_t): ctrl_data_out.data.poke_args.data = *((uint8_t *) ctrl_data_in->data.poke_args.addr); break; } ctrl_data_out.id = USRP2_CTRL_ID_WOAH_I_DEFINITELY_PEEKED_IT_DUDE; send_udp_pkt(USRP2_UDP_CTRL_PORT, src, &ctrl_data_out, sizeof(ctrl_data_out)); break; case USRP2_CTRL_ID_SO_LIKE_CAN_YOU_READ_THIS_UART_BRO:{ //executes a readline()-style read, up to num_bytes long, up to and including newline int num_bytes = ctrl_data_in->data.uart_args.bytes; if(num_bytes > 20) num_bytes = 20; num_bytes = fngets_timeout(ctrl_data_in->data.uart_args.dev, (char *) ctrl_data_out.data.uart_args.data, num_bytes); ctrl_data_out.id = USRP2_CTRL_ID_I_HELLA_READ_THAT_UART_DUDE; ctrl_data_out.data.uart_args.bytes = num_bytes; break; } case USRP2_CTRL_ID_HEY_WRITE_THIS_UART_FOR_ME_BRO:{ int num_bytes = ctrl_data_in->data.uart_args.bytes; if(num_bytes > 20) num_bytes = 20; //before we write to the UART, we flush the receive buffer //this assumes that we're interested in the reply hal_uart_rx_flush(ctrl_data_in->data.uart_args.dev); fnputstr(ctrl_data_in->data.uart_args.dev, (char *) ctrl_data_in->data.uart_args.data, num_bytes); ctrl_data_out.id = USRP2_CTRL_ID_MAN_I_TOTALLY_WROTE_THAT_UART_DUDE; ctrl_data_out.data.uart_args.bytes = num_bytes; break; } default: ctrl_data_out.id = USRP2_CTRL_ID_HUH_WHAT; send_udp_pkt(USRP2_UDP_CTRL_PORT, src, &ctrl_data_out, sizeof(ctrl_data_out)); } } /* * Called when an ethernet packet is received. * Return true if we handled it here, otherwise * it'll be passed on to the DSP Tx pipe */ static bool eth_pkt_inspector(dbsm_t *sm, int bufno) { //point me to the ethernet frame uint32_t *buff = (uint32_t *)buffer_ram(bufno); //treat this as fast-path data? // We have to do this operation as fast as possible. // Therefore, we do not check all the headers, // just check that the udp port matches // and that the vrt header is non zero. // In the future, a hardware state machine will do this... if ( //warning! magic numbers approaching.... (((buff + ((2 + 14 + 20)/sizeof(uint32_t)))[0] & 0xffff) == USRP2_UDP_DATA_PORT) && ((buff + ((2 + 14 + 20 + 8)/sizeof(uint32_t)))[0] != USRP2_INVALID_VRT_HEADER) ) return false; //test if its an ip recovery packet typedef struct{ padded_eth_hdr_t eth_hdr; char code[4]; union { struct ip_addr ip_addr; } data; }recovery_packet_t; recovery_packet_t *recovery_packet = (recovery_packet_t *)buff; if (recovery_packet->eth_hdr.ethertype == 0xbeee && strncmp(recovery_packet->code, "addr", 4) == 0){ printf("Got ip recovery packet: "); print_ip_addr(&recovery_packet->data.ip_addr); newline(); set_ip_addr(&recovery_packet->data.ip_addr); return true; } //pass it to the slow-path handler size_t len = buffer_pool_status->last_line[bufno] - 3; handle_eth_packet(buff, len); return true; } //------------------------------------------------------------------ /* * 1's complement sum for IP and UDP headers * * init chksum to zero to start. */ static unsigned int CHKSUM(unsigned int x, unsigned int *chksum) { *chksum += x; *chksum = (*chksum & 0xffff) + (*chksum>>16); *chksum = (*chksum & 0xffff) + (*chksum>>16); return x; } /* * Called when eth phy state changes (w/ interrupts disabled) */ volatile bool link_is_up = false; // eth handler sets this void link_changed_callback(int speed) { link_is_up = speed != 0; hal_set_leds(link_is_up ? LED_RJ45 : 0x0, LED_RJ45); printf("\neth link changed: speed = %d\n", speed); } static void setup_network(void){ //setup ethernet header machine sr_udp_sm->eth_hdr.mac_dst_0_1 = (fp_mac_addr_dst.addr[0] << 8) | fp_mac_addr_dst.addr[1]; sr_udp_sm->eth_hdr.mac_dst_2_3 = (fp_mac_addr_dst.addr[2] << 8) | fp_mac_addr_dst.addr[3]; sr_udp_sm->eth_hdr.mac_dst_4_5 = (fp_mac_addr_dst.addr[4] << 8) | fp_mac_addr_dst.addr[5]; sr_udp_sm->eth_hdr.mac_src_0_1 = (fp_mac_addr_src.addr[0] << 8) | fp_mac_addr_src.addr[1]; sr_udp_sm->eth_hdr.mac_src_2_3 = (fp_mac_addr_src.addr[2] << 8) | fp_mac_addr_src.addr[3]; sr_udp_sm->eth_hdr.mac_src_4_5 = (fp_mac_addr_src.addr[4] << 8) | fp_mac_addr_src.addr[5]; sr_udp_sm->eth_hdr.ether_type = ETHERTYPE_IPV4; //setup ip header machine unsigned int chksum = 0; sr_udp_sm->ip_hdr.ver_ihl_tos = CHKSUM(0x4500, &chksum); // IPV4, 5 words of header (20 bytes), TOS=0 sr_udp_sm->ip_hdr.total_length = UDP_SM_INS_IP_LEN; // Don't checksum this line in SW sr_udp_sm->ip_hdr.identification = CHKSUM(0x0000, &chksum); // ID sr_udp_sm->ip_hdr.flags_frag_off = CHKSUM(0x4000, &chksum); // don't fragment sr_udp_sm->ip_hdr.ttl_proto = CHKSUM(0x2011, &chksum); // TTL=32, protocol = UDP (17 decimal) //sr_udp_sm->ip_hdr.checksum .... filled in below uint32_t src_ip_addr = fp_socket_src.addr.addr; uint32_t dst_ip_addr = fp_socket_dst.addr.addr; sr_udp_sm->ip_hdr.src_addr_high = CHKSUM(src_ip_addr >> 16, &chksum); // IP src high sr_udp_sm->ip_hdr.src_addr_low = CHKSUM(src_ip_addr & 0xffff, &chksum); // IP src low sr_udp_sm->ip_hdr.dst_addr_high = CHKSUM(dst_ip_addr >> 16, &chksum); // IP dst high sr_udp_sm->ip_hdr.dst_addr_low = CHKSUM(dst_ip_addr & 0xffff, &chksum); // IP dst low sr_udp_sm->ip_hdr.checksum = UDP_SM_INS_IP_HDR_CHKSUM | (chksum & 0xffff); //setup the udp header machine sr_udp_sm->udp_hdr.src_port = fp_socket_src.port; sr_udp_sm->udp_hdr.dst_port = fp_socket_dst.port; sr_udp_sm->udp_hdr.length = UDP_SM_INS_UDP_LEN; sr_udp_sm->udp_hdr.checksum = UDP_SM_LAST_WORD; // zero UDP checksum } inline static void buffer_irq_handler(unsigned irq) { uint32_t status = buffer_pool_status->status; dbsm_process_status(&dsp_tx_sm, status); dbsm_process_status(&dsp_rx_sm, status); } int main(void) { u2_init(); putstr("\nTxRx-NEWETH\n"); print_mac_addr(ethernet_mac_addr()->addr); newline(); print_ip_addr(get_ip_addr()); newline(); printf("FPGA compatibility number: %d\n", USRP2_FPGA_COMPAT_NUM); printf("Firmware compatibility number: %d\n", USRP2_FW_COMPAT_NUM); ethernet_register_link_changed_callback(link_changed_callback); ethernet_init(); register_mac_addr(ethernet_mac_addr()); register_ip_addr(get_ip_addr()); register_udp_listener(USRP2_UDP_CTRL_PORT, handle_udp_ctrl_packet); register_udp_listener(USRP2_UDP_DATA_PORT, handle_udp_data_packet); register_udp_listener(USRP2_UDP_UPDATE_PORT, handle_udp_fw_update_packet); // initialize double buffering state machine for ethernet -> DSP Tx dbsm_init(&dsp_tx_sm, DSP_TX_BUF_0, &dsp_tx_recv_args, &dsp_tx_send_args, eth_pkt_inspector); // initialize double buffering state machine for DSP RX -> Ethernet dbsm_init(&dsp_rx_sm, DSP_RX_BUF_0, &dsp_rx_recv_args, &dsp_rx_send_args, dbsm_rx_inspector); sr_tx_ctrl->clear_state = 1; bp_clear_buf(DSP_TX_BUF_0); bp_clear_buf(DSP_TX_BUF_1); // kick off the state machine dbsm_start(&dsp_tx_sm); //int which = 0; while(1){ // hal_gpio_write(GPIO_TX_BANK, which, 0x8000); // which ^= 0x8000; buffer_irq_handler(0); if(i2c_done) { i2c_done = false; send_udp_pkt(USRP2_UDP_CTRL_PORT, i2c_src, &ctrl_data_out, sizeof(ctrl_data_out)); //printf("Sending UDP packet from main loop for I2C...\n"); } if(spi_done) { spi_done = false; send_udp_pkt(USRP2_UDP_CTRL_PORT, spi_src, &ctrl_data_out, sizeof(ctrl_data_out)); } int pending = pic_regs->pending; // poll for under or overrun if (pending & PIC_UNDERRUN_INT){ //dbsm_handle_tx_underrun(&dsp_tx_sm); pic_regs->pending = PIC_UNDERRUN_INT; // clear interrupt putchar('U'); } if (pending & PIC_OVERRUN_INT){ dbsm_handle_rx_overrun(&dsp_rx_sm); pic_regs->pending = PIC_OVERRUN_INT; // clear pending interrupt // FIXME Figure out how to handle this robustly. // Any buffers that are emptying should be allowed to drain... putchar('O'); } } }